Volume 27, Issue 2 (Avicenna Journal of Clinical Medicine-Summer 2020)                   Avicenna J Clin Med 2020, 27(2): 77-84 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rezaee S, Mazdeh M, Behzad M, Zamani A, Eftekharian M M. Interleukin-34 Gene Expression in the Peripheral Blood Leukocytes of Guillain-Barre Patients. Avicenna J Clin Med 2020; 27 (2) :77-84
URL: http://sjh.umsha.ac.ir/article-1-2068-en.html
1- MSc in Immunology, Hamadan University of Medical Sciences, Hamadan, Iran
2- Professor, Departement of Neurology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
3- Associate Professor, Departement of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
4- Professor, Departement of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
5- Associate Professor, Departement of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran , eftekharian@umsha.ac.ir
Abstract:   (2303 Views)
Background and Objective: Immune-mediated polyneuropathy is divided into acute and chronic categories named as Guillain Barré syndrome (GBS) and chronic inflammatory demyelinating polyradiculoneuropathy based on the course of the disease. Although the basic mechanism of these conditions has not been yet clarified, genes that regulate immune responses are putative contributors in their development. The aim of this study was to compare the blood expression level of IL-34 gene between patients with GBS and healthy individuals.
Materials and Methods: In this case-control study, blood samples were collected from 53 patients with GBS (i.e., 33 chronic patients and 20 acute patients) and 40 healthy individuals. Gene expression levels in the studied groups were measured using the real-time polymerase chain reaction technique. Finally, statistical analysis was performed using SPSS software (version 16) at a significance level of < 0.05 was.
Results: The patient group consisted of 36 (67.93%) males and 17 (32.07%) females. In addition, the healthy control group included 27 (67.5%) males and 13 (32.5%) females. The results showed a significant increase in IL-34 expression in the GBS patients, compared to that in the control group.
Conclusion: The findings of the present study revealed an increase in IL-34 gene expression in patients with GBS. Accordingly, it seems that IL-34 gene has an important role in the pathogenesis of this disease.
 
Full-Text [PDF 850 kb]   (903 Downloads)    
Type of Study: Original | Subject: Immunology

References
1. Walling AD, Dickson G. Guillain-Barre syndrome. Am Fam Physician. 2013;87(3):191-7. PMID: 23418763
2. Willison HJ, Jacobs BC, van Doorn PA. Guillain-Barre syndrome. Lancet. 2016;388(10045):717-27. PMID: 26948435 DOI: 10.1016/S0140-6736(16)00339-1
3. Dimachkie MM, Barohn RJ. Guillain-Barré syndrome and variants. Neurol Clin. 2013;31(2):491-510. PMID: 23642721 DOI: 10.1016/j.ncl.2013.01.005
4. Lambracht-Washington D, Wolfe GI. Cytokines in Guillain-Barré syndrome: a lesson in time. Arch Neurol. 2011;68(4):427-8. PMID: 21482922 DOI: 10.1001/archneurol.2011.47
5. Zhang HL, Zheng XY, Zhu J. Th1/Th2/Th17/Treg cytokines in Guillain–Barré syndrome and experimental autoimmune neuritis. Cytokine Growth Factor Rev. 2013;24(5):443-53. PMID: 23791985 DOI: 10.1016/j.cytogfr.2013.05.005
6. Mathey EK, Park SB, Hughes RA, Pollard JD, Armati PJ, Barnett MH, et al. Chronic inflammatory demyelinating polyra-diculoneuropathy: from pathology to phenotype. J Neurol Neurosurg Psychiatry. 2015;86(9):973-85. PMID: 25677463 DOI: 10.1136/jnnp-2014-309697
7. Yuki N. Ganglioside mimicry and peripheral nerve disease. Muscle Nerve. 2007;35(6):691-711. PMID: 17373701 DOI: 10.1002/mus.20762
8. Rodriguez Y, Rojas M, Pacheco Y, Acosta-Ampudia Y, Ramirez-Santana C, Monsalve DM, et al. Guillain-Barre syndrome, transverse myelitis and infectious diseases. Cell Mol Immunol. 2018;15(6):547-62. PMID: 29375121 DOI: 10.1038/cmi.2017.142
9. Segaliny AI, Brion R, Mortier E, Maillasson M, Cherel M, Jacques Y, et al. Syndecan-1 regulates the biological activities of interleukin-34. Biochim Biophys Acta. 2015;1853(5):1010-21. PMID: 25662098 DOI: 10.1016/j.bbamcr.2015.01.023
10. Guillonneau C, Bezie S, Anegon I. Immunoregulatory properties of the cytokine IL-34. Cell Mol Life Sci. 2017;74(14):2569-86. PMID: 28258292 DOI: 10.1007/s00018-017-2482-4
11. Foucher ED, Blanchard S, Preisser L, Descamps P, Ifrah N, Delneste Y, et al. IL-34- and M-CSF-induced macrophages switch memory T cells into Th17 cells via membrane IL-1alpha. Eur J Immunol. 2015;45(4):1092-102. PMID: 25545357 DOI: 10.1002/eji.201444606
12. Segaliny AI, Mohamadi A, Dizier B, Lokajczyk A, Brion R, Lanel R, et al. Interleukin-34 promotes tumor progression and metastatic process in osteosarcoma through induction of angiogenesis and macrophage recruitment. Int J Cancer. 2015;137(1):73-85. PMID: 25471534 DOI: 10.1002/ijc.29376
13. Xu J, Gao C, Zhang F, Ma X, Peng X, Zhang R, et al. Differentially expressed lncRNAs and mRNAs identified by microarray analysis in GBS patients vs healthy controls. Sci Rep. 2016;6:21819. PMID: 26898505 DOI: 10.1038/srep21819
14. Xie HH, Shen H, Zhang L, Cui MY, Xia LP, Lu J. Elevated serum interleukin-34 level in patients with systemic lupus erythematosus is associated with disease activity. Sci Rep. 2018;8(1):3462. PMID: 29472590 DOI: 10.1038/s41598-018-21859-z
15. Wang S, Liu Y, Zhao N, Cui X, Huang M, Li Y, et al. IL-34 expression is reduced in hashimoto's thyroiditis and associated with thyrocyte apoptosis. Front Endocrinol. 2018;9:629. PMID: 30405534 DOI: 10.3389/fendo.2018.00629
16. Boström EA, Lundberg P. The newly discovered cytokine IL-34 is expressed in gingival fibroblasts, shows enhanced expression by pro-inflammatory cytokines, and stimulates osteoclast differentiation. PloS One. 2013;8(12):e81665. PMID: 24339952 DOI: 10.1371/journal.pone.0081665
17. Yang S, Jiang S, Wang Y, Tu S, Wang Z, Chen Z. Interleukin 34 upregulation contributes to the increment of MicroRNA 21 expression through STAT3 activation associated with disease activity in rheumatoid arthritis. J Rheumatol. 2016;43(7):1312-9. PMID: 27084907 DOI: 10.3899/jrheum.151253
18. Tian Y, Shen H, Xia L, Lu J. Elevated serum and synovial fluid levels of interleukin-34 in rheumatoid arthritis: possible association with disease progression via interleukin-17 production. J Interferon Cytokine Res. 2013;33(7):398-401. PMID: 23421370 DOI: 10.1089/jir.2012.0122
19. Cheng Y, Yang X, Zhang X, An Z. Analysis of expression levels of IL-17 and IL-34 and influencing factors for prognosis in patients with lupus nephritis. Exp Ther Med. 2019;17(3):2279-83. PMID: 30783486 DOI: 10.3892/etm.2019.7168
20. Debnath M, Nagappa M, Subbanna M, Sundaravadivel P, Talukdar PM, Shivakumar V, et al. Th17 pathway signatures in a large Indian cohort of Guillain Barré syndrome. J Neuroimmunol. 2018;323:125-30. PMID: 30196825 DOI: 10.1016/j.jneuroim.2018.08.001. Boulakirba S, Pfeifer A, Mhaidly R, Obba S, Goulard M, Schmitt T, et al. IL-34 and CSF-1 display an equivalent macrophage differentiation ability but a different polarization potential. Sci Rep. 2018;8(1):256. PMID: 29321503 DOI: 10.1038/s41598-017-18433-4
21. Chen H, Ende N, Souayah N. The cytokine profile of chronic inflammatory demyelinating polyneuropathy (P06.134). Neurology. 2012;78(1 Suppl):P06.134.
22. Lindau R, Mehta RB, Lash GE, Papapavlou G, Boij R, Berg G, et al. Interleukin-34 is present at the fetal-maternal interface and induces immunoregulatory macrophages of a decidual phenotype in vitro. Hum Reprod. 2018;33(4):588-99. PMID: 29579271 DOI: 10.1093/humrep/dey037
23. Chi LJ, Xu WH, Zhang ZW, Huang HT, Zhang LM, Zhou J. Distribution of Th17 cells and Th1 cells in peripheral blood and cerebrospinal fluid in chronic inflammatory demyelinating polyradiculoneuropathy. J Peripher Nerv Syst. 2010;15(4):345-56. PMID: 21199106 DOI: 10.1111/j.1529-8027.2010.00294.x
24. Sivieri S, Ferrarini AM, Lolli F, Matà S, Pinto F, Tavolato B, et al. Cytokine pattern in the cerebrospinal fluid from patients with GBS and CIDP. J Neurol Sci. 1997;147(1):93-5. PMID: 9094066 DOI: 10.1016/s0022-510x(96)00319-x
25. Baghdadi M, Endo H, Tanaka Y, Wada H, Seino KI. Interleukin 34, from pathogenesis to clinical applications. Cytokine. 2017;99:139-47. PMID: 28886491 DOI: 10.1016/j.cyto.2017.08.020
26. Zelante T, Ricciardi-Castagnoli P. The yin-yang nature of CSF1R-binding cytokines. Nat Immunol. 2012;13(8):717-9. PMID: 22814343 DOI: 10.1038/ni.2375
27. Ge Y, Huang M, Yao YM. Immunomodulation of interleukin-34 and its potential significance as a disease biomarker and therapeutic target. Int J Biol Sci. 2019;15(9):1835-45. PMID: 31523186 DOI: 10.7150/ijbs.35070
28. Preisser L, Miot C, Le Guillou-Guillemette H, Beaumont E, Foucher ED, Garo E, et al. IL-34 and macrophage colony-stimulating factor are overexpressed in hepatitis C virus fibrosis and induce profibrotic macrophages that promote collagen synthesis by hepatic stellate cells. Hepatology. 2014;60(6):1879-90. PMID: 25066464 DOI: 10.1002/hep.27328
29. Liu Y, Liu H, Zhu J, Bian Z. Interleukin-34 drives macrophage polarization to the M2 phenotype in autoimmune hepatitis. Pathol Res Pract. 2019;215(8):152493. PMID: 31201067 DOI: 10.1016/j.prp.2019.152493
30. Bézie S, Picarda E, Ossart J, Tesson L, Usal C, Renaudin K, et al. IL-34 is a Treg-specific cytokine and mediates transplant tolerance. J Clin Invest. 2015;125(10):3952-64. PMID: 26389674 DOI: 10.1172/JCI81227

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Avicenna Journal of Clinical Medicine

Designed & Developed by : Yektaweb