Volume 28, Issue 2 (Avicenna Journal of Clinical Medicine-Summer 2021)                   Avicenna J Clin Med 2021, 28(2): 95-103 | Back to browse issues page


XML Persian Abstract Print


1- PhD in Physiotherapy, Musculoskeletal Rehabilitation Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
2- M.Sc Student in Physiotherapy, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran , miladzarrin.pt1995@gmail.com
3- Associate Professor, Rehabilitation Research Center, Department of Rehabilitation Management, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
4- Professor, Orthopedic Research Center Department of Physiotherapy, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
5- Associate Professor, Musculoskeletal Rehabilitation Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
6- Instructor, Musculoskeletal Rehabilitation Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
Abstract:   (2288 Views)
Background and Objective: The lumbopelvic rhythm is the coordinated movement of the lumbar spine and hip during trunk flexion and return. It is recognized as a clinical indicator of low back pain (LBP); nonetheless, the reported patterns of lumbopelvic rhythm in patients with LBP are inconsistent. The investigation of more homogeneous subgroups of patients with LBP is essential to clarify the lumbopelvic rhythm patterns. Therefore, the present study aimed to compare lumbopelvic rhythm between healthy individuals and patients with lumbar clinical instability.
Materials and Methods: A total of 44 subjects (22 healthy cases and 22 lumbar clinical instability (LCI) patients) participated in the present study. The kinematic parameters during the trunk flexion and return task were recorded using a Qualisys motion capture system. Hip flexion angle, lumbar flexion angle, and lumbopelvic rhythm were statistically analyzed in every 25% of the flexion and return phase of flexion. Data were analyzed using Kolmogorov-Smirnov, Chi-square, and independent t-test.
Results: In the second quarter of trunk flexion, the flexion angle of the lumbar spine was larger in the lumbar clinical instability group, as compared to that in the control group (P=0.016). Furthermore, the hip flexion angle was smaller in the lumbar clinical instability group, in comparison with that in the control group (P=0.011).
Conclusion: These results show that the lumbopelvic rhythms are different among healthy subjects and patients with lumbar clinical instability.
Full-Text [PDF 959 kb]   (1082 Downloads)    
Type of Study: Original | Subject: Physical Therapy

References
1. . Staal J, Hlobil H, Van Tulder M, Waddell G, Burton AK, Koes B, et al. Occupational health guidelines for the management of low back pain: an international comparison. Occup Environ Med. 2003;60(9):618-26. PMID: 12937181 DOI: 10.1136/oem.60.9.618
2. . Hicks GE, Fritz JM, Delitto A, Mishock J. Interrater reliability of clinical examination measures for identification of lumbar segmental instability. Arch Phys Med Rehabil. 2003;84(12):1858-64. PMID: 14669195 DOI: 10.1016/s0003-9993(03)00365-4
3. . Moissenet F, Rose-Dulcina K, Armand S, Genevay S. A systematic review of movement and muscular activity biomarkers to discriminate non-specific chronic low back pain patients from an asymptomatic population. Sci Rep. 2021;11(1):5850. PMID: 33712658 DOI: 10.1038/s41598-021-84034-x
4. . Dankaerts W, O'Sullivan P, Burnett A, Straker L. Altered patterns of superficial trunk muscle activation during sitting in nonspecific chronic low back pain patients: importance of subclassification. Spine. 2006;31(17):2017-23. PMID: 16924221 DOI: 10.1097/01.brs.0000228728.11076.82
5. . Hooker QL, Lanier VM, van Dillen LR. Consistent differences in lumbar spine alignment between low back pain subgroups and genders during clinical and functional activity sitting tests. Musculoskelet Sci Pract. 2021;52:102336. PMID: 33548765 DOI: 10.1016/j.msksp.2021.102336
6. . Panjabi MM. Clinical spinal instability and low back pain. J Electromyogr Kinesiol. 2003;13(4):371-9. PMID: 12832167 DOI: 10.1016/s1050-6411(03)00044-0
7. . Rathod AK, Garg BK, Sahetia VM. Lumbar rocking test: a new clinical test for predicting lumbar instability. J Craniovertebr Junction Spine. 2019;10(1):33-8. PMID: 31000978 DOI: 10.4103/jcvjs.JCVJS_5_19
8. . Demoulin C, Distree V, Tomasella M, Crielaard JM, Vanderthommen M. Lumbar functional instability: a critical appraisal of the literature. Annales de readaptation et de medecine physique. Ann Readapt Med Phys. 2007;50(8):677-84. PMID: 17597247 DOI: 10.1016/j.annrmp.2007.05.007
9. . Olson MW. Biomechanical characteristics of low back tissues during trunk flexion-extension. Baton Rouge, Louisiana: Louisiana State University and Agricultural & Mechanical College; 2006.
10. . Watson PJ, Booker C, Main C, Chen A. Surface electromyography in the identification of chronic low back pain patients: the development of the flexion relaxation ratio. Clin Biomech. 1997;12(3):165-71. PMID: 11415689 DOI: 10.1016/s0268-0033(97)00065-x
11. . Cook C, Brismée JM, Sizer PS Jr. Subjective and objective descriptors of clinical lumbar spine instability: a Delphi study. Man Ther. 2006;11(1):11-21. PMID: 15996889 DOI: 10.1016/j.math.2005.01.002
12. . Alessa F, Ning X. Changes of lumbar posture and tissue loading during static trunk bending. Hum Mov Sci. 2018;57:59-68. PMID: 29161614 DOI: 10.1016/j.humov.2017.11.006
13. . Kim MH, Yi CH, Kwon OY, Cho SH, Cynn HS, Kim YH, et al. Comparison of lumbopelvic rhythm and flexion-relaxation response between 2 different low back pain subtypes. Spine. 2013;38(15):1260-7. PMID: 23514875 DOI: 10.1097/BRS.0b013e318291b502
14. . Zawadka M, Skublewska-Paszkowska M, Gawda P, Lukasik E, Smolka J, Jablonski M. What factors can affect lumbopelvic flexion-extension motion in the sagittal plane? A literature review. Hum Mov Sci. 2018;58:205-18. PMID: 29482120 DOI: 10.1016/j.humov.2018.02.008
15. . Vazirian M, Van Dillen L, Bazrgari B. Lumbopelvic rhythm during trunk motion in the sagittal plane: A review of the kinematic measurement methods and characterization approaches. Phys Ther Rehabil. 2016;3:5. PMID: 29034099 DOI: 10.7243/2055-2386-3-5
16. . Hidalgo B, Gilliaux M, Poncin W, Detrembleur C. Reliability and validity of a kinematic spine model during active trunk movement in healthy subjects and patients with chronic non-specific low back pain. J Rehabil Med. 2012;44(9):756-63. PMID: 22847223 DOI: 10.2340/16501977-1015
17. . Porter JL, Wilkinson A. Lumbar-hip flexion motion: a comparative study between asymptomatic and chronic low back pain in 18-to 36-year-old men. Spine. 1997;22(13):1508-13. PMID: 9231971 DOI: 10.1097/00007632-199707010-00017
18. . Esola MA, McClure PW, Fitzgerald GK, Siegler S. Analysis of lumbar spine and hip motion during forward bending in subjects with and without a history of low back pain. Spine. 1996;21(1):71-8. PMID: 9122766 DOI: 10.1097/00007632-199601010-00017
19. . Paquet N, Malouin F, Richards CL. Hip-spine movement interaction and muscle activation patterns during sagittal trunk movements in low back pain patients.Spine. 1994;19(5):596-603. PMID: 8184355 DOI: 10.1097/00007632-199403000-00016
20. . Porter JL, Wilkinson A. Lumbar-hip flexion motion. A comparative study between asymptomatic and chronic low back pain in 18- to 36-year-old men. Spine. 1997;22(13):1508-13. PMID: 9231971 DOI: 10.1097/00007632-199707010-00017
21. . Henriksen M, Lund H, Bliddal H, Danneskiold-Samsøe B. Dynamic control of the lumbopelvic complex; lack of reliability of established test procedures. Eur Spine J. 2007;16(6):733-40. PMID: 16957945 DOI: 10.1007/s00586-006-0198-5
22. . Wattananon P, Ebaugh D, Biely SA, Smith SS, Hicks GE, Silfies SP. Kinematic characterization of clinically observed aberrant movement patterns in patients with non-specific low back pain: a cross-sectional study. BMC Musculoskelet Disord. 2017;18(1):455. PMID: 29141615 DOI: 10.1186/s12891-017-1820-x
23. . O’Shaughnessy J, Roy JF, Descarreaux M. Changes in flexion-relaxation phenomenon and lumbo-pelvic kinematics following lumbar disc replacement surgery. J Neuroeng Rehabil. 2013;10(1):72. PMID: 23842284 DOI: 10.1186/1743-0003-10-72
24. . Delitto A, Erhard RE, Bowling RW. A treatment-based classification approach to low back syndrome: identifying and staging patients for conservative treatment. Phys Ther. 1995;75(6):470-85. PMID: 7770494 DOI: 10.1093/ptj/75.6.470
25. . Panjabi MM. The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J Spinal Disord. 1992;5:390-6. PMID: 1490035 DOI: 10.1097/00002517-199212000-00002
26. . Youssef J, Davidson B, Zhou BH, Lu Y, Patel V, Solomonow M. Neuromuscular neutral zones response to static lumbar flexion: muscular stability compensator. Clin Biomech. 2008;23(7):870-80. PMID: 18468744 DOI: 10.1016/j.clinbiomech.2008.03.069
27. . Ahmadi A, Maroufi N, Behtash H, Zekavat H, Parnianpour M. Kinematic analysis of dynamic lumbar motion in patients with lumbar segmental instability using digital videofluoroscopy. Eur Spine J. 2009;18(11):1677-85. PMID: 19727854 DOI: 10.1007/s00586-009-1147-x
28. . Baecke JA, Burema J, Frijters JE. A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am J Clin Nutr. 1982;36(5):936-42. PMID: 7137077 DOI: 10.1093/ajcn/36.5.936
29. . van Wingerden JP, Vleeming A, Buyruk H, Raissadat K. Stabilization of the sacroiliac joint in vivo: verification of muscular contribution to force closure of the pelvis. Eur Spine J. 2004;13(3):199-205. PMID: 14986072 DOI: 10.1007/s00586-003-0575-2

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.