Volume 26, Issue 1 (Avicenna Journal of Clinical Medicine-Spring 2019)                   Avicenna J Clin Med 2019, 26(1): 51-59 | Back to browse issues page

XML Persian Abstract Print

1- , bab.asghari@gmail.com
Abstract:   (3920 Views)
Background and Objective: The role of biofilm formation by bacteria has been considered as an important stage in the pathogenesis of Klebsiella pneumoniae. This pathogen is one of the most important opportunistic pathogen agents of nosocomial infections, such as pneumonia, urinary tract infections, invasive infections, and surgical site infections. This study aimed to investigate the biofilm producer strains among different clinical isolates of Klebsiella pneumoniae.
Materials and Methods: This observational study was conducted on 230 clinical samples with bacterial infection. The selective culture media and biochemical tests were used for the identification of Klebsiella pneumoniae isolates. Crystal Violet assay and PCR were also used to characterize biofilm strains.
Results: Out of 230 samples collected from different specimens, 100 isolates (43.47%) of Klebsiella pneumoniae were identified by biochemical tests. Of these, 58 (58%) and 42 isolates (42%) were isolated from the male and female individuals, respectively. The phenotypic method showed 2, 27, 41, and 30 isolates as strong biofilm producers, medium biofilm producers, weak biofilm producers, and non-biofilm producers, respectively. The frequency of genes were reported as wzm (47%), markA (69%), pgaAa (65%), and wbbm (47%), respectively.
Conclusion: The markA gene plays an important role in biofilm formation and can identify different biofilms in Klebsiella pneumoniae strains. It is also possible to identify bacteria with weak, moderate, and strong biofilms.
Full-Text [PDF 1112 kb]   (1739 Downloads)    
Type of Study: Original | Subject: Microbiology & Medical Virology

1. Aires CP, Batista MJA, Pitondo-Silva A. Decrease of ceftriaxone susceptibility in Klebsiella pneumoniae according to biofilm maturation. J Glob Antimicrob Resist. 2017;9:126-7. PMID: 28552832 DOI: 10.1016/j.jgar.2017.05.001
2. Araújo BF, Ferreira ML, de Campos PA, Royer S, Gonçalves IR, da Fonseca Batistão DW, et al. Hypervirulence and biofilm production in KPC-2-producing Klebsiella pneumoniae CG258 isolated in Brazil. J Med Microbiol. 2018;67(4):523-8. PMID: 29509136 DOI: 10.1099/jmm.0.000711
3. Araújo F, Ribeiro C, Nero P, Branco JC. Klebsiella pneumoniae spinal epidural abscess treated conservatively: case report and review. Acta Reumatol Port. 2012;37(3):260-3. PMID: 23348115
4. Candan ED, Aksöz N. Klebsiella pneumoniae: characteristics of carbapenem resistance and virulence factors. Acta Biochim Pol. 2015;62(4):867-74. PMID: 26637376 DOI: 10.18388/abp.2015_1148
5. Bansal S, Harjai K, Chhibber S. Aeromonas punctata derived depolymerase improves susceptibility of Klebsiella pneumoniae biofilm to gentamicin. BMC Microbiol. 2015;15:119. PMID: 26063052 DOI: 10.1186/s12866-015-0455-z
6. Cazzaniga G, Ottobelli M, Ionescu A, Garcia-Godoy F, Brambilla E. Surface properties of resin-based composite materials and biofilm formation: a review of the current literature. Am J Dent. 2015;28(6):311-20. PMID: 26846036
7. dos Santos WM, Matuoka JY, Secoli SR. Cost-effectiveness of the antimicrobial treatment for inpatients infected with Klebsiella pneumoniae carbapenemase: a systematic review protocol. JBI Database System Rev Implement Rep. 2018;16(2):336-44. PMID: 29419620 DOI: 10.11124/JBISRIR-2016-003332
8. Benthall G, Touzel RE, Hind CK, Titball RW, Sutton JM, Thomas RJ, et al. Evaluation of antibiotic efficacy against infections caused by planktonic or biofilm cultures of Pseudomonas aeruginosa and Klebsiella pneumoniae in Galleria mellonella. Int J Antimicrob Agents. 2015;46(5):538-45. PMID: 26364845 DOI: 10.1016/j.ijantimicag.2015.07.014
9. Geller BL, Li L, Martinez F, Sully E, Sturge CR, Daly SM, et al. Morpholino oligomers tested in vitro, in biofilm and in vivo against multidrug-resistant Klebsiella pneumoniae. J Antimicrob Chemother. 2018;73(6):1611-9. PMID: 29506074 DOI: 10.1093/jac/dky058
10. Chen W, Li B, Li S, Ou YW, Ou Q. Effects of scutellaria baicalensis on activity and biofilm formation of Klebsiella pneumoniae. Chin Med Sci J. 2016;31(3):180-4. PMID: 27733226
11. Vuotto C, Longo F, Pascolini C, Donelli G, Balice M, Libori M, et al. Biofilm formation and antibiotic resistance in Klebsiella pneumoniae urinary strains. J Appl Microbiol. 2017;123(4):1003-18. PMID: 28731269 DOI: 10.1111/jam.13533
12. Chung PY. The emerging problems of Klebsiella pneumoniae infections: carbapenem resistance and biofilm formation. FEMS Microbiol Lett. 2016;363(20):1-6. DOI: 10.1093/femsle/fnw219
13. de Campos PA, Royer S, Batistao DW, Araújo BF, Queiroz LL, de Brito CS, et al. Multidrug resistance related to biofilm formation in Acinetobacter baumannii and Klebsiella pneumoniae clinical strains from different pulsotypes. Curr Microbiol. 2016;72(5):617-27. PMID: 26846651 DOI: 10.1007/s00284-016-0996-x
14. Swathi C, Chikala R, Ratnakar K, Sritharan V. A structural, epidemiological & genetic overview of Klebsiella pneumoniae carbapenemases (KPCs). Indian J Med Res. 2016;144(1):21-31. PMID: 27834322 DOI: 10.4103/0971-5916.193279
15. Elemam A, Rahimian J, Mandell W. Infection with panresistant Klebsiella pneumoniae: a report of 2 cases and a brief review of the literature. Clin Infect Dis. 2009;49(2):271-4. PMID: 19527172 DOI: 10.1086/600042
16. Fu L, Huang M, Zhang X, Yang X, Liu Y, Zhang L, et al. Frequency of virulence factors in high biofilm formation blaKPC-2 producing Klebsiella pneumoniae strains from hospitals. Microb Pathog. 2018;116:168-72. DOI: 10.1016/j.micpath.2018.01.030
17. Ta C, Arnason J. Mini review of phytochemicals and plant taxa with activity as microbial biofilm and quorum sensing inhibitors. Molecules. 2015;21(1):E29. PMID: 26712734 DOI: 10.3390/molecules21010029
18. Tavakol M, Momtaz H. Determination of antibiotic resistance profile in Klebsiella pneumonia strains isolated from urinary tract infections of patients hospitalized in Peyambaran hospital (Tehran-Iran). Feyz. 2017;21(1):74-82. [Persian]
19. Kiani-Abari P, Zamanzad B, Gholipour A, Noormohamadi Z. Determination and prevalence of antibiotic resistance in multi-drug resistant Klebsiella pneumonia in patients referred to the educational hospitals of Shahrekord in 2013. J Shahrekord Uuniv Med Sci. 2015;17(3):121-7. [Persian]
20. Mohammad S, Mohammadi B, Zandi S, Ramazanzadeh R, Rouhi S. Antibiotic sensitiviti in strains of Klebsiella pneumoniae Isolated from clinical samples Besat hospitals of Sannandaj (2013-2014). Zanko Med Sci. 2016;17(52):1-9. [Persian]
21. Seifi K, Kazemian H, Heidari H, Rezagholizadeh F, Saee Y, Shirvani F, et al. Evaluation of biofilm formation among Klebsiella pneumoniae isolates and molecular characterization by ERIC-PCR. Jundishapur J Microbiol. 2016;9(1):e30682. PMID: 27099694 DOI: 10.5812/jjm.30682
22. Ostria-Hernandez ML, Juárez-de la Rosa KC, Arzate-Barbosa P, Lara-Hernández A, Sakai F, Ibarra JA, et al. Nosocomial, multidrug-resistant Klebsiella pneumoniae strains isolated from mexico city produce robust biofilms on abiotic surfaces but not on human lung cells. Microb Drug Resist. 2018;24(4):422-33. PMID: 28915364 DOI: 10.1089/mdr.2017.0073
23. Vuotto C, Longo F, Pascolini C, Donelli G, Balice MP, Libori MF, et al. Biofilm formation and antibiotic resistance in Klebsiella pneumoniae urinary strains. J Appl Microbiol. 2017;123(4):1003-18. PMID: 28731269 DOI: 10.1111/jam.13533
24. Chhibber S, Gondil VS, Sharma S, Kumar M, Wangoo N, Sharma RK. A novel approach for combating Klebsiella pneumoniae biofilm using histidine functionalized silver nanoparticles. Front Microbiol. 2017;8:1104. PMID: 28670301 DOI: 10.3389/fmicb.2017.01104

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.