Volume 27, Issue 3 (Avicenna Journal of Clinical Medicine-Autumn 2020)                   Avicenna J Clin Med 2020, 27(3): 184-192 | Back to browse issues page


XML Persian Abstract Print


1- , babakkheirkhah@yahoo.com
Abstract:   (2514 Views)
Background and Objective: Mycobacterium tuberculosis is an intracellular pathogen, and the main target of this bacterium is the lungs, upper respiratory system, and their mucous membranes leading to acute or chronic infection of the respiratory tract. The purpose of this study was to investigate the microRNA 21 (miR-21) expression levels in the patients suspected of Mycobacterium tuberculosis.
Materials and Methods: The present study was a case-by-case study, and the results were compared between the two groups of patients and healthy individuals. The serum samples were collected from 200 patients suspected of Mycobacterium tuberculosis during a 3-year period in the hospitals of Kerman, Iran. The expression level of the extracted miR-21 was analyzed using real-time polymerase chain reaction.
Results: There was no significant difference in the serum miR-21 gene expression in the symptomatic patients with negative smear and negative purified protein derivative (PPD) skin test. However, the patients with positive smear and negative PPD, positive PPD and negative smear, and positive smear and positive PPD showed a significant increase in the miR-21 gene expression (P<0.05).
Conclusion: The obtained results confirmed the need for more accurate diagnostic methods, especially molecular techniques, for the detection of M. tuberculosis infection as late detection of infection can eliminate the possibility of effective treatment and endanger the lives of individuals. Due to the correlation between miR-21 and this infection, the miR-21 inhibitors can also be used for the treatment of the disease.
 
Full-Text [PDF 1116 kb]   (1317 Downloads)    
Type of Study: Original | Subject: Infectious Diseases

References
1. Nikolayevskyy V, Kranzer K, Niemann S, Drobniewski F. Whole genome sequencing of Mycobacterium tuberculosis for detection of recent transmission and tracing outbreaks: a systematic review. Tuberculosis. 2016;98:77-85. PMID: 27156621 DOI: 10.1016/j.tube.2016.02.009
2. Namvarpour M, Mansouri R, Tebianian M. Evaluation of three different administration routes (IM, SC and IN) on humoral immune responses against Mycobacterium Tuberculosis ESAT-6/CFP-10 fusion protein. J Shahid Sadoughi Univ Med Sci. 2018;25(7):537-46. [Persian]
3. Azadi D, Shojaei H. The role of the laboratory in the diagnosis of tuberculosis. Iran J Med Microbiol. 2016;10(2):1-15.
4. Raviglione MC, Uplekar MW. WHO's new stop TB strategy? Lancet. 2006;367(9514):952-5. PMID: 16546550 DOI: 10.1016/S0140-6736(06)68392-X
5. Jafari M, Mansori R. A review of methods for immunological diagnosis of tuberculosis infection. J Shahid Sadoughi Univ Med Sci. 2018;24(10):852-60. [Persian]
6. Kiazyk S, Ball T. Latent tuberculosis infection: an overview. Can Commun Dis Rep. 2017;43(3-4):62-6. PMID: 29770066 DOI: 10.14745/ccdr.v43i34a01
7. Keck J, Gupta R, Christenson LK, Arulanandam BP. microRNA mediated regulation of immunity against gram-negative bacteria. Int Rev Immunol. 2017;36(5):287-99. PMID: 28800263 DOI: 10.1080/08830185.2017.1347649
8. Maltby S, Plank M, Tay HL, Collison A, Foster PS. Targeting microRNA function in respiratory diseases: mini-review. Front Physiol. 2016;7:21. PMID: 26869937 DOI: 10.3389/fphys.2016.00021
9. Mao S. microRNA processing (phase) separated. Science. 2017;357(6357):1251-2. DOI: 10.1126/science.357.6357.1251-f
10. Wu J, Lu C, Diao N, Zhang S, Wang S, Wang F, et al Analysis of microRNA expression profiling identifies miR-155 and miR-155* as potential diagnostic markers for active tuberculosis: a preliminary study. Hum Immunol. 2012;73(1):31-7. PMID: 22037148 DOI: 10.1016/j.humimm.2011.10.003
11. Zhang X, Guo J, Fan S, Li Y, Wei L, Yang X, et al. Screening and identification of six serum microRNAs as novel potential combination biomarkers for pulmonary tuberculosis diagnosis. PloS One. 2013;8(12):e81076. PMID: 24349033 DOI: 10.1371/journal.pone.0081076
12. Kim JK, Yuk JM, Kim SY, Kim TS, Jin HS, Yang CS, et al. MicroRNA-125a inhibits autophagy activation and antimicrobial responses during mycobacterial infection. J Immunol. 2015;194(11):5355-65. PMID: 25917095 DOI: 10.4049/jimmunol.1402557
13. Lv Y, Guo S, Li XG, Chi JY, Qu YQ, Zhong HL. Sputum and serum microRNA-144 levels in patients with tuberculosis before and after treatment. Int J Infect Dis. 2016;43:68-73. PMID: 26724775 DOI: 10.1016/j.ijid.2015.12.014
14. Cui JY, Liang HW, Pan XL, Li D, Jiao N, Liu YH, et al. Characterization of a novel panel of plasma microRNAs that discriminates between Mycobacterium tuberculosis infection and healthy individuals. PloS One. 2017;12(9):e0184113. PMID: 28910318 DOI: 10.1371/journal.pone.0184113
15. Liang S, Song Z, Wu Y, Gao Y, Gao M, Liu F, et al. microRNA-27b modulates inflammatory response and apoptosis during Mycobacterium tuberculosis infection. J Immunol. 2018;200(10):3506-18. PMID: 29661829 DOI: 10.4049/jimmunol.1701448
16. Hatefi N, Nouraee N, Parvin M, Ziaee SA, Mowla SJ. Evaluating the expression of oct4 as a prognostic tumor marker in bladder cancer. Iran J Basic Med Sci. 2012;15(6):1154-61. PMID: 23653844
17. Wu Y, Song Y, Xiong Y, Wang X, Xu K, Han B, et al. MicroRNA-21 (Mir-21) promotes cell growth and invasion by repressing tumor suppressor PTEN in colorectal cancer. Cell Physiol Biochem. 2017;43(3):945-58. PMID: 28957811 DOI: 10.1159/000481648
18. Kaufmann SH. How can immunology contribute to the control of tuberculosis? Nat Rev Immunol. 2001;1(1):20-30. PMID: 11905811 DOI: 10.1038/35095558
19. Fu Y, Yi Z, Wu X, Li J, Xu F. Circulating microRNAs in patients with active pulmonary tuberculosis. J Clin Microbiol. 2011;49(12):4246-51. PMID: 21998423 DOI: 10.1128/JCM.05459-11
20. Singh PK, Singh AV, Chauhan DS. Current understanding on micro RNAs and its regulation in response to Mycobacterial infections. J Biomed Sci. 2013;20(1):14. PMID: 23448104 DOI: 10.1186/1423-0127-20-14
21. Drury RE, O’Connor D, Pollard AJ. The clinical application of microRNAs in infectious disease. Front Immunol. 2017;8:1182. PMID: 28993774 DOI: 10.3389/fimmu.2017.01182
22. Kumarswamy R, Volkmann I, Thum T. Regulation and function of miRNA-21 in health and disease. RNA Biol. 2011;8(5):706-13. PMID: 21712654 DOI: 10.4161/rna.8.5.16154
23. Wu Z, Lu H, Sheng J, Li L. Inductive microRNA-21 impairs anti-mycobacterial responses by targeting IL-12 and Bcl-2. FEBS Lett. 2012;586(16):2459-67. PMID: 22710123 DOI: 10.1016/j.febslet.2012.06.004
24. Abd-El-Fattah AA, Sadik NA, Shaker OG, Aboulftouh ML. Differential microRNAs expression in serum of patients with lung cancer, pulmonary tuberculosis, and pneumonia. Cell Biochem Biophys. 2013;67(3):875-84. PMID: 23559272 DOI: 10.1007/s12013-013-9575-y
25. Zhou M, Yu G, Yang X, Zhu C, Zhang Z, Zhan X. Circulating microRNAs as biomarkers for the early diagnosis of childhood tuberculosis infection. Mol Med Rep. 2016;13(6):4620-6. PMID: 27082104 DOI: 10.3892/mmr.2016.5097
26. Wang C, Yang S, Sun G, Tang X, Lu S, Neyrolles O, et al. Comparative miRNA expression profiles in individuals with latent and active tuberculosis. PloS One. 2011;6(10):e25832. PMID: 22003408 DOI: 10.1371/journal.pone.0025832
27. Kleinsteuber K, Heesch K, Schattling S, Kohns M, Sander-Jülch C, Walzl G, et al. Decreased expression of miR-21, miR-26a, miR-29a, and miR-142-3p in CD4+ T cells and peripheral blood from tuberculosis patients. PloS One. 2013;8(4):e61609. PMID: 23613882 DOI: 10.1371/journal.pone.0061609

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.