Volume 26, Issue 1 (Avicenna Journal of Clinical Medicine-Spring 2019)                   Avicenna J Clin Med 2019, 26(1): 12-19 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Beikzadeh B, Angaji S A, Abolhasani M. Association between rs2735839 and Serum Prostate-specific Antigen Level Regarding Risk of Prostate Cancer in Iranian Population. Avicenna J Clin Med 2019; 26 (1) :12-19
URL: http://sjh.umsha.ac.ir/article-1-1862-en.html
1- , angaji@khu.ac.ir
Abstract:   (3567 Views)
Background and Objective: Prostate cancer is among the five common cancers in males. It is second cancer in terms of the age-standardized rate (ASR) (ASR=16.6) in Iran. The rs2735839 G/A, an intergenic polymorphism is located on chromosome 19q13.33 at 600 base pairs of the KLK3 gene untranslatable region. This gene which codes prostate-specific antigen (PSA) is used in the screening and diagnosis of prostate cancer. The purpose of this study was to evaluate the association between this polymorphism and prostate adenocarcinoma with PSA.
Materials and Methods: This case-control study included 103 and 100 patients with prostate adenocarcinoma and benign prostatic hyperplasia (BPH) as case and control groups, respectively. Tetra-primer amplification refractory mutation system-polymerase chain reaction was used to determine the genotype of each participant regarding rs2735839 polymorphism.
Results: There was a significant difference between the adenocarcinoma prostate and BPH groups regarding genotype frequency AG+AA (OR [95% CI]=4.991 [2.475-10.065], P=0.00). According to the results of statistical analysis, a significant difference was observed between the adenocarcinoma and BPH groups in terms of allele frequency (OR [95% CI]=3.927 [2.085-7.397], P=0.00). Moreover, There was a significant difference between rs2735839 and PSA regarding the genotype frequency polymorphism (P=0.011).
Conclusion: The results indicate that rs2735839 is associated with an increased risk of prostate cancer in Iranian population. It is worth noting that a significant difference was found between the distribution of allele A and that of allele G with PSA levels of >10.
Full-Text [PDF 1289 kb]   (1164 Downloads)    
Type of Study: Original | Subject: Genetics

1. Pernar CH, Ebot EM, Wilson KM, Mucci LA. The epidemiology of prostate cancer. Cold Spring Harb Perspect Med. 2018;8(12):a030361. PMID: 29311132 DOI: 10.1101/cshperspect.a030361
2. Hassanipour S, Fathalipour M, Salehiniya H. The incidence of prostate cancer in Iran: a systematic review and metaanalysis. Prostate Int. 2018;6(2):41-5. PMID: 29922630 DOI: 10.1016/j.prnil.2017.11.003
3. Rafiemanesh H, ghoncheh M, salehiniya H, mohammadian HA. Epidemiology of prostate cancer and its incidence trends in Iran. J Sabzevar Univ Med Sci. 2016;23(2):320-7. [Persian]
4. Taitt HE. Global trends and prostate cancer: a review of incidence, detection, and mortality as influenced by race, ethnicity, and geographic location. Am J Mens Health. 2018;12(6):1807-23. PMID: 30203706 DOI: 10.1177/ 1557988318798279
5. Zhou CK, Check DP, Lortet‐Tieulent J, Laversanne M, Jemal A, Ferlay J, et al. Prostate cancer incidence in 43 populations worldwide: an analysis of time trends overall and by age group. Int J Cancer. 2016;138(6):1388-400. PMID: 26488767 DOI: 10.1002/ijc.29894
6. Pakzad R, Mohammadian-Hafshejani A, Ghoncheh M, Pakzad I, Salehiniya H. The incidence and mortality of prostate cancer and its relationship with development in Asia. Prostate Int. 2015;3(4):135-40. PMID: 26779461 DOI: 10.1016/j.prnil.2015.09.001
7. Hassanipour S, Namvar G, Fathalipour M, Salehiniya H. The incidence of kidney cancer in Iran: a systematic review and meta-analysis. Biomedicine. 2018;8(2):9. PMID: 29806587 DOI: 10.1051/bmdcn/2018080209
8. Haas GP, Delongchamps N, Brawley OW, Wang CY, de la Roza G. The worldwide epidemiology of prostate cancer: perspectives from autopsy studies. Can J Urol. 2008; 15(1):3866-71. PMID: 18304396
9. Pakzad R, Rafiemanesh H, Ghoncheh M, Sarmad A, Salehiniya H, Hosseini S, et al. Prostate cancer in Iran: trends in incidence and morphological and epidemiological characteristics. Asian Pac J Cancer Prev. 2016;17(2):839-43. PMID: 26925689
10. Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, et al. Global cancer observatory: cancer today. Lyon, France: International Agency for Research on Cancer; 2018.
11. Bell KJ, Del Mar C, Wright G, Dickinson J, Glasziou P. Prevalence of incidental prostate cancer: a systematic review of autopsy studies. Int J Cancer. 2015;137(7):1749-57. PMID: 25821151 DOI: 10.1002/ijc.29538
12. Hughes C, Murphy A, Martin C, Sheils O, O’Leary J. Molecular pathology of prostate cancer. J Clin Pathol. 2005;58(7):673-84. DOI: 10.1136/jcp.2002.003954
13. Grignon DJ, Sakr WA. Zonal origin of prostatic adenocarcinoma: are there biologic differences between transition zone and peripheral zone adenocarcinomas of the prostate gland? J Cell Biochem Suppl. 1994;19:267-9. PMID: 7823599
14. Tian JY, Guo FJ, Zheng GY, Ahmad A. Prostate cancer: updates on current strategies for screening, diagnosis and clinical implications of treatment modalities. Carcinogenesis. 2017;39(3):307-17. PMID: 29216344 DOI: 10.1093/carcin/ bgx141
15. Ao X, Liu Y, Bai XY, Qu X, Xu Z, Hu G, et al. Association between EHBP1 rs721048 (A> G) polymorphism and prostate cancer susceptibility: a meta-analysis of 17 studies involving 150,678 subjects. Onco Targets Ther. 2015;8:1671-80. PMID: 26185455 DOI: 10.2147/OTT.S84034
16. Wallis CJ, Nam RK. Prostate cancer genetics: a review. EJIFCC. 2015;26(2):79-91. PMID: 27683484
17. McLean MH, El-Omar EM. Genetics of gastric cancer. Nat Rev Gastroenterol Hepatol. 2014;11(11):664-74. PMID: 25134511 DOI: 10.1038/nrgastro.2014.143
18. Zhao CX, Liu M, Xu Y, Yang K, Wei D, Shi XH, et al. 8q24 rs4242382 polymorphism is a risk factor for prostate cancer among multi-ethnic populations: evidence from clinical detection in China and a meta-analysis. Asian Pac J Cancer Prev. 2014;15(19):8311-7. PMID: 25339022
19. Alvarez-Cubero MJ, Saiz M, Martinez-Gonzalez LJ, Alvarez JC, Lorente JA, Cozar JM. Genetic analysis of the principal genes related to prostate cancer: a review. Urol Oncol. 2013;31(8):1419-29. PMID: 23141781 DOI: 10.1016/j. urolonc.2012.07.011
20. Bethel CR, DeMarzo AM, Nelson WG. Molecular pathogenesis of prostate cancer: somatic, epigenetic, and genetic alterations. Mol Pathol. 2009;12:489-500. DOI: 10.1016/B978-0-12-374419-7.00024-X
21. Benafif S, Kote-Jarai Z, Eeles RA. A review of prostate cancer genome-wide association studies (GWAS). Cancer Epidemiol Biomarkers Prev. 2018;27(8):845-57. PMID: 29348298 DOI: 10.1158/1055-9965.EPI-16-1046
22. Ahmed M, Dorling L, Kerns S, Fachal L, Elliott R, Partliament M, et al. Common genetic variation associated with increased susceptibility to prostate cancer does not increase risk of radiotherapy toxicity. Br J Cancer. 2016;114(10):1165-74. PMID: 27070714 DOI: 10.1038/bjc.2016.94
23. Kote-Jarai Z, Al Olama AA, Leongamornlert D, Tymrakiewicz M, Saunders E, Guy M, et al. Identification of a novel prostate cancer susceptibility variant in the KLK3 gene transcript. Hum Genet. 2011;129(6):687-94. PMID: 21465221 DOI: 10.1007/s00439-011-0981-1
24. Hsu FC, Sun J, Wiklund F, Isaacs SD, Wiley KE, Purcell LD, et al. A novel prostate cancer susceptibility locus at 19q13. Cancer Res. 2009;69(7):2720-3. PMID: 19318570 DOI: 10.1158/0008-5472.CAN-08-3347
25. He Y, Gu J, Strom S, Logothetis CJ, Kim J, Wu X. The prostate cancer susceptibility variant rs2735839 near KLK3 gene is associated with aggressive prostate cancer and can stratify gleason score 7 patients. Clin Cancer Res. 2014;20(19):5133-9. PMID: 25274378 DOI: 10.1158/1078- 0432.CCR-14-0661
26. Parikh H, Wang Z, Pettigrew KA, Jia J, Daugherty S, Yeager M, et al. Fine mapping the KLK3 locus on chromosome 19q13. 33 associated with prostate cancer susceptibility and PSA levels. Hum Genet. 2011;129(6):675-85. DOI: 10.1007/s00439-011-0953-5
27. Mattsson JM, Ravela S, Hekim C, Jonsson M, Malm J, Närvänen A, et al. Proteolytic activity of prostate-specific antigen (PSA) towards protein substrates and effect of peptides stimulating PSA activity. PLoS One. 2014;9(9):e107819. PMID: 25237904 DOI: 10.1371/journal.pone.0107819
28. LeBeau AM, Singh P, Isaacs JT, Denmeade SR. Prostatespecific antigen is a “chymotrypsin-like” serine protease with unique P1 substrate specificity. Biochemistry. 2009; 48(15):3490-6. PMID: 19281249 DOI: 10.1021/bi9001858
29. Chen C, Xin Z. Single-nucleotide polymorphism rs1058205 of KLK3 is associated with the risk of prostate cancer: a casecontrol study of Han Chinese men in Northeast China. Medicine. 2017;96(10):e6280. PMID: 28272245 DOI: 10.1097/MD.0000000000006280
30. Ding WH, Ren KW, Yue C, Zou JG, Zuo L, Zhang LF, et al. Association between three genetic variants in kallikrein 3 and prostate cancer risk. Biosci Rep. 2018;38(6):BSR20181151. PMID: 30413614 DOI: 10.1042/BSR20181151
31. Pomerantz MM, Werner L, Xie W, Regan MM, Lee GS, Sun T, et al. Association of prostate cancer risk loci with disease aggressiveness and prostate cancer-specific mortality. Cancer Prev Res. 2011;4(5):719-28. PMID: 21367958 DOI: 10.1158/1940-6207.CAPR-10-0292
32. Liu H, Wang B, Han C. Meta‐analysis of genome‐wide and replication association studies on prostate cancer. Prostate. 2011;71(2):209-24. PMID: 20690139 DOI: 10.1002/pros.21235
33. Nobata S, Hishida A, Naito M, Asai Y, Mori A, Kuwabara M, et al. Association between KLK3 rs2735839 G/A polymorphism and serum PSA levels in Japanese men. Urol Int. 2012;89(1):39-44. PMID: 22433834 DOI: 10.1159/ 000332197
34. Severi G, Hayes VM, Neufing P, Padilla EJ, Tilley WD, Eggleton SA, et al. Variants in the prostate-specific antigen (PSA) gene and prostate cancer risk, survival, and circulating PSA. Cancer Epidemiol Biomarkers Prev. 2006;15(6):1142- 7. PMID: 16775173 DOI: 10.1158/1055-9965.EPI-05-0984
35. Eeles RA, Kote-Jarai Z, Giles GG, Al Olama AA, Guy M, Jugurnauth SK, et al. Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet. 2008;40(3):316-21. PMID: 18264097 DOI: 10.1038/ng.90
36. Gudmundsson J, Besenbacher S, Sulem P, Gudbjartsson DF, Olafsson I, Arinbjarnarson S, et al. Genetic correction of PSA values using sequence variants associated with PSA levels. Sci Transl Med. 2010;2(62):62ra92. PMID: 21160077 DOI: 10.1126/scitranslmed.3001513
37. Chang BL, Spangler E, Gallagher S, Haiman CA, Henderson B, Isaacs W, et al. Validation of genome-wide prostate cancer associations in men of African descent. Cancer Epidemiol Biomarkers Prev. 2011;20(1):23-32. PMID: 21071540 DOI: 10.1158/1055-9965.EPI-10-0698
38. Hoffmann TJ, Van Den Eeden SK, Sakoda LC, Jorgenson E, Habel LA, Graff RE, et al. A large multiethnic genome-wide association study of prostate cancer identifies novel risk variants and substantial ethnic differences. Cancer Discov. 2015;5(8):878-91. PMID: 26034056 DOI: 10.1158/2159- 8290.CD-15-0315
39. Penney KL, Schumacher FR, Kraft P, Mucci LA, Sesso HD, Ma J, et al. Association of KLK3 (PSA) genetic variants with prostate cancer risk and PSA levels. Carcinogenesis. 2011;32(6):853-9. PMID: 21421545 DOI: 10.1093/ carcin/bgr050
40. Gallagher DJ, Vijai J, Cronin AM, Bhatia J, Vickers AJ, Gaudet MM, et al. Susceptibility loci associated with prostate cancer progression and mortality. Clin Cancer Res. 2010;16(10):2819-32. PMID: 20460480 DOI: 10.1158/1078- 0432.CCR-10-0028

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Avicenna Journal of Clinical Medicine

Designed & Developed by : Yektaweb