Volume 27, Issue 1 (Avicenna Journal of Clinical Medicine-Spring 2020)                   Avicenna J Clin Med 2020, 27(1): 37-44 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Baniasadi N, Kariminik A, Khoshroo S M R. Synthesis and Study of Bactericidal Effects of Iron Oxide Nanoparticles on Bacteria Isolated from Urinary Tract Infections. Avicenna J Clin Med 2020; 27 (1) :37-44
URL: http://sjh.umsha.ac.ir/article-1-2009-en.html
1- , a.kariminik@iauk.ac.ir
Abstract:   (3848 Views)
Background and Objective: Following the increased prevalence of microbial resistance against chemical antimicrobial agents, the biological effects of metallic nanoparticles have recently been studied by researchers. In this study, the antimicrobial effects of iron oxide nanoparticles made by chemical methods in different concentrations on bacteria isolated from urinary tract infections were investigated.
Materials & Methods: In this cross sectional- descriptive research, using chemical reactants and only by controlling the conditions and applying optimal conditions, Iron oxide nanoparticles were synthesized by chemical precipitation method and their bactericidal effects on the six common bacteria causing urinary tract infections was studied by agar well diffusion method. The minimum inhibitory and minimum bactericidal concentrations of nanoparticles were also determined. In addition, the antibiotic resistance pattern of bacteria was investigated for antibiotics Gentamycin, Amikacin, Ampicillin, Nalidixic acid, Ciprofloxacin, Norfloxacin, Sulfomethoxazole by disk diffusion method.
Results: The iron oxide nanoparticle was made in a spherical shape with a diameter of about 60 nm. Bacteria had an extensive antibiotic resistance, but iron nanoparticles were effective on all 6 bacteria, and the minimum inhibitory and minimum bactericidal concentration to Proteus mirabilis, Klebsiella pneumoniae, staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Serratia marcescens were 0.32, 0.04, 0.02, 0.08, 0.04 and 0.02 and at 1.25, 0.08, 0.61, 32 0, 16.0 and 16.0 mg/mL respectively.
Conclusion: Iron oxide nanoparticles showed a wide spectrum of effects at very low concentrations against bacteria, and these nanoparticles could be considered as an appropriate candidate for the treatment of bacterial infections after extensive research.
Full-Text [PDF 1078 kb]   (1626 Downloads)    
Type of Study: Original | Subject: Microbiology & Medical Virology

References
1. Foxman B. The epidemiology of urinary tract infection. Nat Rev Urol. 2010;7(12):653-60. PMID: 21139641 DOI: 10.1038/nrurol.2010.190
2. Mirhosseini M. Investigation of combination effect of magnesium oxide and iron oxide Nanoparticles on the growth and morphology of the bacteria Staphylococcus aureus and Escherichia coli in Juice. Shahid Sadoughi Univ J Med Sci. 2017;24(11):924-37. [Persian]
3. Rizzello L, Cingolani R, Pompa PP. Nanotechnology tools for antibacterial materials. Nanomedicine. 2013;8(5):807-21. PMID: 23656266 DOI: 10.2217/nnm.13.63
4. Salata O. Applications of nanoparticles in biology and medicine. J Nanobiotechnol. 2004;2(1):3. PMID: 15119954 DOI: 10.1186/1477-3155-2-3
5. Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007;18(22):225103.
6. Woo K, Hong J, Choi S, Lee HW, Ahn JP, Kim CS, et al. Easy synthesis and magnetic properties of iron oxide nanoparticles. Chem Mater. 2004;16(14):2814-8. DOI: 10.1021/cm049552x
7. Ghani S, Rafiee B, Sadeghi D, Ahsani M. Biosynthesis of iron nano-particles by bacillus megaterium and its anti-bacterial properties. J Babol Univ Med Sci. 2017;19(7):13-9. DOI: 10.22088/jbums.19.7.2
8. Niemeyer CM. Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed Engl. 2001;40(22):4128-58. PMID: 29712109 DOI: 10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-S
9. Shen Y, Tang J, Nie Z, Wang Y, Ren Y, Zuo L. Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Sep Purif Technol. 2009;68(3):312-9. DOI: 10.1016/j.seppur.2009.05.020
10. Saji VS, Choe HC, Yeung KW. Nanotechnology in biomedical applications: a review. Int J Nano Biomater. 2010;3(2):119-39.
11. Prasad R, Kumar V, Prasad KS. Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol. 2014;13(6):705-13. DOI: 10.5897/AJBX2013.13554
12. Nasseri S, Mahvi A, Nabizadeh R, Esrafili A. Investigation of synthesized silica coating Fe3O4 nanoparticles efficiency in removal of NOM from water. Iran J Health Environ. 2014;7(3):289-300. [Persian]
13. Ivask A, Titma T, Visnapuu M, Vija H, Kakinen A, Sihtmae M, et al. Toxicity of 11 metal oxide nanoparticles to three mammalian cell types in vitro. Cur Top Med Chem. 2015;15(18):1914-29. PMID: 25961521 DOI: 10.2174/1568026615666150506150109
14. Neyaz N, Siddiqui WA, Nair KK. Application of surface functionalized iron oxide nanomaterials as a nanosorbents in extraction of toxic heavy metals from ground water: a review. Int J Environ Sci. 2014;4(4):472-83. DOI: 10.6088/ijes.2014040400004
15. Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol. 2009;4(10):634-41. PMID: 19809453 DOI: 10.1038/nnano.2009.242
16. Cushing BL, Kolesnichenko VL, O'Connor CJ. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev. 2004;104(9):3893-946. PMID: 15352782 DOI: 10.1021/cr030027b
17. Cui H, Feng Y, Ren W, Zeng T, Lv H, Pan Y. Strategies of large scale synthesis of monodisperse nanoparticles. Recent Pat Nanotechnol. 2009;3(1):32-41. PMID: 19149753 DOI: 10.2174/187221009787003302
18. Winn WC. Koneman's color atlas and textbook of diagnostic microbiology. Philadelphia: Lippincott Williams & Wilkins; 2006.
19. Saha B, Bhattacharya J, Mukherjee A, Ghosh A, Santra C, Dasgupta AK, et al. In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics. Nanoscale Res Lett. 2007;2(12):614. DOI: 10.1007/s11671-007-9104-2
20. Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3(2):163-75. PMID: 18274517 DOI: 10.1038/nprot.2007.521
21. Shakiba M, Kariminik A, Parsia P. Antimicrobial activity of different parts of Phoenix dactylifera. Int J Mol Clin Microbiol. 2011;1(2):107-11.
22. Bonjar GH, Nik AK, Heydari MR, Ghasemzadeh MH, Farrokhi PR, Moein MR, et al. Anti-pseudomona and anti-bacilli activity of some medicinal plants of Iran. DARU J Pharm Sci. 2003;11(4):157-63.
23. Bonev B, Hooper J, Parisot J. Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. J Antimicrob Chemother. 2008;61(6):1295-301. PMID: 18339637 DOI: 10.1093/jac/dkn090
24. Clinical and laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. 27th ed. Wayne: Clinical and laboratory Standards Institute; 2017.
25. Shokoohi R, Samarghandi M, Dargahi A, Alikhani MY, Roshanaei G, Golrokhi MM. Investigation of antibiotic resistance pattern of bacteria causing the urinary tract infection in urine samples of patients admitted in and referred to Shahid Beheshti Hospital in Hamadan. Pajouhan Sci J. 2018;17(3):34-40. DOI: 10.29252/psj.17.3.34
26. Rai M, Duran N. Metal nanoparticles in microbiology. Berlin, Germany: Springer Science & Business Media; 2011.
27. Prucek R, Tuček J, Kilianová M, Panáček A, Kvítek L, Filip J, et al. The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials. 2011;32(21):4704-13. PMID: 21507482 DOI: 10.1016/j.biomaterials.2011.03.039
28. Krishnamoorthy K, Manivannan G, Kim SJ, Jeyasubramanian K, Premanathan M. Antibacterial activity of MgO nanoparticles based on lipid peroxidation by oxygen vacancy. J Nanopart Res. 2012;14(9):1063. DOI: 10.1007/s11051-012-1063-6
29. Martinez-Castanon G, Nino-Martinez N, Martinez-Gutierrez F, Martinez-Mendoza J, Ruiz F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res. 2008;10(8):1343-8. DOI: 10.1007/s11051-008-9428-6
30. Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol. 2008;42(13):4927-33. PMID: 18678028 DOI: 10.1021/es800408u
31. Abdeen S, Isaac RR, Geo S, Sornalekshmi S, Rose A, Praseetha P. Evaluation of antimicrobial activity of biosynthesized iron and silver nanoparticles using the fungi fusarium oxysporum and actinomycetes sp. on human pathogens. Nano Biomed Eng. 2013;5(1):39-45. DOI: 10.5101/nbe.v5i1.p39-45
32. Imani S, Zagari Z, Rezaei-Zarchi S, Zand AM, Dorodiyan M, Bariabarghoyi H, et al. Antibacterial effect of CrO and CoFe2O4 nanoparticles upon Staphylococcus aureus. J Fasa Univ Med Sci. 2011;1(3):175-81. [Persian]
33. Tran N, Mir A, Mallik D, Sinha A, Nayar S, Webster TJ. Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Int J Nanomed. 2010;5:277-83. PMID: 20463943 DOI: 10.2147/ijn.s9220
34. Parveen S, Wani AH, Shah MA, Devi HS, Bhat MY, Koka JA. Preparation, characterization and antifungal activity of iron oxide nanoparticles. Microb Pathog. 2018;115:287-92. PMID: 29306005 DOI: 10.1016/j.micpath.2017.12.068

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Avicenna Journal of Clinical Medicine

Designed & Developed by : Yektaweb