Volume 30, Issue 1 (Avicenna Journal of Clinical Medicine-Spring 2023)                   Avicenna J Clin Med 2023, 30(1): 5-13 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sheikh V, Sardarmelli Z, Behzad M. Association of Interleukin-32α with Interleukin-35 and Transforming Growth Factor-β Produced by the Peripheral Blood Mononuclear Cells from Patients with Type 2 Diabetes Mellitus. Avicenna J Clin Med 2023; 30 (1) :5-13
URL: http://sjh.umsha.ac.ir/article-1-2654-en.html
1- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
2- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
3- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran , m.behzad@umsha.ac.ir
Abstract:   (1573 Views)
Background and Objective: Cytokine production was shown to be changed in Type 2 diabetes mellitus (T2DM). Nonetheless, the relationship of pro-inflammatory interleukin (IL)-32α with anti-inflammatory IL-35 and transforming growth factor (TGF)-β is unclear in T2DM. The present study aimed to evaluate the IL-32α, IL-35, and TGF-β levels produced by peripheral blood mononuclear cells (PBMCs) in patients compared to healthy controls (HCs). Correlations between the IL-32α and IL-35 and TGF-β, as well as between those cytokines and paraclinical parameters [(fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c), GFR, albumin, and creatinine)] were assessed.
Materials and Methods: Blood samples were taken from 38 patients and 38 HCs. The PBMCs from each donor were isolated with the ficoll method and cultured with in vitro stimulator for four days. The production of IL-32α, IL-35, and TGF-β in culture supernatants was determined with ELISA. Paraclinical parameters were evaluated by standard laboratory methods.
Results: High levels of IL-32α and low levels of IL-35 were found in patients compared to in HCs (P=0.006; P<0.001). A negative correlation between IL-32α and IL-35 was detected in patients (P<0.001). IL-32α was positively correlated with FPG and HbA1c (P=0.002, P=0.005), whereas IL-35 was negatively correlated with them in patients (both P<0.001). No correlations were detected between the cytokines and BMI, GFR, albumin, and creatinine, as well as between the TGF-β levels.
Conclusion: Increased IL-32α but diminished IL-35 production are linked with each other and with the glucose metabolism parameters in T2DM. It seems that IL-32α and IL-35 have a potential role in T2DM pathogenesis.

 
Full-Text [PDF 1666 kb]   (884 Downloads)    
Type of Study: Original | Subject: Immunology

References
1. Gautam A, Pandit B. IL32: The multifaceted and unconventional cytokine. Hum Immunol. 2021;82(9):659-67. PMID: 34024634 DOI: 10.1016/j.humimm.2021.05.002
2. Ribeiro-Dias F, Saar Gomes R, de Lima Silva LL, Dos Santos JC, Joosten LA. Interleukin 32: a novel player in the control of infectious diseases. J Leukoc Biol. 2017;101(1):39-52. PMID: 27793959 DOI: 10.1189/jlb.4RU0416-175RR
3. Al-Shobaili HA, Rasheed Z. Elevated gene expression of interleukin-32 isoforms alpha, beta, gamma, and delta in the peripheral blood of chronic psoriatic patients. Diseases. 2018;6(1):21. PMID: 29538330 DOI: 10.3390/diseases6010021
4. Na SJ, So SH, Lee KO, Choi YC. Elevated serum level of interleukin-32α in the patients with myasthenia gravis. J Neurol. 2011;258:1865-70. PMID: 21487807 DOI: 10.1007/s00415-011-6036-7
5. Yao Q, Wang B, Jia X, Li Q, Yao W, Zhang JA. Increased human interleukin-32 expression is related to disease activity of graves' disease. Front Endocrinol (Lausanne). 2019;10:613. PMID: 31616372 DOI: 10.3389/fendo.2019.00613
6. Lin X, Yang L, Wang G, Zi F, Yan H, Guo X, et al. Interleukin-32α promotes the proliferation of multiple myeloma cells by inducing production of IL-6 in bone marrow stromal cells. Oncotarget. 2017;8(54):92841-54. PMID: 29190960 DOI: 10.18632/oncotarget.21611
7. Zhou T, Hu Z, Yang S, Sun L, Yu Z, Wang G. Role of adaptive and innate immunity in Type 2 Diabetes Mellitus. J Diabetes Res. 2018;2018:7457269. PMID: 30533447 DOI: 10.1155/2018/7457269
8. Borzouei S, Mohamadtaheri M, Zamani A, Behzad M. Reduced frequency and functional potency of CD49d(-) T regulatory cells in patients with newly diagnosed type 2 diabetes mellitus. Immunobiology. 2021;226(4):152113. PMID: 34247018 DOI: 10.1016/j.imbio.2021.152113
9. Borzouei S, Moghimi H, Zamani A, Behzad M. Changes in T helper cell-related factors in patients with type 2 diabetes mellitus after empagliflozin therapy. Hum Immunol. 2021;82(6):422-8. PMID: 33771372 DOI: 10.1016/j.humimm.2021.03.004
10. Telikani Z, Sheikh V, Zamani A, Borzouei S, Salehi I, Amirzargar MA, et al. Effects of sitagliptin and vitamin D3 on T helper cell transcription factors and cytokine production in clinical subgroups of type 2 diabetes mellitus: highlights upregulation of FOXP3 and IL-37. Immunopharmacol Immunotoxicol. 2019;41(2):299-311. PMID: 30907193 DOI: 10.1080/08923973.2019.1593447
11. Daryabor G, Atashzar MR, Kabelitz D, Meri S, Kalantar K. The effects of Type 2 Diabetes Mellitus on organ metabolism and the immune system. Front Immunol. 2020;11:1582. PMID: 32793223 DOI: 10.3389/fimmu.2020.01582
12. Li X, Fang P, Yang WY, Wang H, Yang X. IL-35, as a newly proposed homeostasis-associated molecular pattern, plays three major functions including anti-inflammatory initiator, effector, and blocker in cardiovascular diseases. Cytokine. 2019;122:154076. PMID: 28648331 DOI: 10.1016/j.cyto.2017.06.003
13. Sanjabi S, Oh SA, Li MO. Regulation of the immune response by TGF-β: From conception to autoimmunity and infection. Cold Spring Harb Perspect Biol. 2017;9(6):a022236. PMID: 28108486 DOI: 10.1101/cshperspect.a022236
14. Nakano S, Morimoto S, Suzuki S, Tsushima H, Yamanaka K, Sekigawa I, et al. Immunoregulatory role of IL-35 in T cells of patients with rheumatoid arthritis. Rheumatology (Oxford). 2015;54(8):1498-506. PMID: 25731770 DOI: 10.1093/rheumatology/keu528
15. Ouyang H, Shi YB, Liu ZC, Wang Z, Feng S, Kong SM, et al. Decreased interleukin 35 and CD4+EBI3+ T cells in patients with active systemic lupus erythematosus. Am J Med Sci. 2014;348(2):156-61. PMID: 25054737 DOI: 10.1097/MAJ.0000000000000215
16. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145(4):247-54. PMID: 16908915 DOI: 10.7326/0003-4819-145-4-200608150-00004
17. Rohm TV, Meier DT, Olefsky JM, Donath MY. Inflammation in obesity, diabetes, and related disorders. Immunity. 2022;55(1):31-55. PMID: 35021057 DOI: 10.1016/j.immuni.2021.12.013
18. Eguchi K, Manabe I. Macrophages and islet inflammation in type 2 diabetes. Diabetes Obes Metab. 2013;15:152-8. PMID: 24003932 DOI: 10.1111/dom.12168
19. Eggenhuizen PJ, Ng BH, Ooi JD. Treg enhancing therapies to treat autoimmune diseases. Int J Mol Sci. 2020;21(19):7015. PMID: 32977677 DOI: 10.3390/ijms21197015
20. Borzouei S, Gholamian-Hamadan M, Behzad M. Impact of interleukin-32α on T helper cell-related cytokines, transcription factors, and proliferation in patients with type 2 diabetes mellitus. Immunopharmacol Immunotoxicol. 2022:1-9. PMID: 36263937 DOI: 10.1080/08923973.2022.2138430
21. Catalán V, Gómez-Ambrosi J, Rodríguez A, Ramírez B, Valentí V, Moncada R, et al. Increased interleukin-32 levels in obesity promote adipose tissue inflammation and extracellular matrix remodeling: effect of weight loss. Diabetes. 2016;65(12):3636-48. PMID: 27630206 DOI: 10.2337/db16-0287
22. Ye C, Yano H, Workman CJ, Vignali DA. Interleukin-35: Structure, function and its impact on immune-related diseases. J Interferon Cytokine Res. 2021;41(11):391-406. PMID: 34788131 DOI: 10.1089/jir.2021.0147
23. Lin Y, Huang Y, Lu Z, Luo C, shi Y, Zeng Q, et al. Decreased plasma IL-35 levels are related to the left ventricular ejection fraction in coronary artery diseases. PLoS One. 2012;7(12):e52490. PMID: 23285065 DOI: 10.1371/journal.pone.0052490
24. Yan A, You H, Zhang X. Levels of interleukin 27 and interleukin 35 in the serum and vitreous of patients with proliferative diabetic retinopathy. Ocul Immunol Inflamm. 2018;26(2):273-9. PMID: 27537610 DOI: 10.1080/09273948.2016.1203959
25. Luo Z, Lundin S, Mejia-Cordova M, Hassani I, Blixt M, Hjelmqvist D, et al. Interleukin-35 prevents development of autoimmune diabetes possibly by maintaining the phenotype of regulatory B cells. Int J Mol Sci. 2021;22(23):12988. PMID: 34884797 DOI: 10.3390/ijms222312988
26. Becker-Merok A, Eilertsen G, Nossent JC. Levels of transforming growth factor-beta are low in systemic lupus erythematosus patients with active disease. J Rheumatol. 2010;37(10):2039-45. PMID: 20682675 DOI: 10.3899/jrheum.100180
27. Borzouei S, Sheikh V, Ghasemi M, Zamani A, Telikani Z, Zareighane Z, et al. Anti-inflammatory effect of combined sitagliptin and vitamin D3 on cytokines profile in patients with type 2 diabetes mellitus. J Interferon Cytokine Res. 2019;39(5):293-301. PMID: 30855208 DOI: 10.1089/jir.2018.0144
28. Yuan N, Zhang HF, Wei Q, Wang P, Guo WY. Expression of CD4+ CD25+ Foxp3+ regulatory T cells, interleukin 10 and transforming growth factor β in newly diagnosed type 2 diabetic patients. Exp Clin Endocrinol Diabetes. 2018;126(2):96-101. PMID: 28954308 DOI: 10.1055/s-0043-113454
29. Moon YM, Yoon BY, Her YM, Oh HJ, Lee JS, Kim KW, et al. IL-32 and IL-17 interact and have the potential to aggravate osteoclastogenesis in rheumatoid arthritis. Arthritis Res Ther. 2012;14(6):R246. PMID: 23148681 DOI: 10.1186/ar4089
30. Kim SH, Han SY, Azam T, Yoon DY, Dinarello CA. Interleukin-32: a cytokine and inducer of TNFα. Immunity. 2005;22(1):131-42. PMID: 15664165 DOI: 10.1016/j.immuni.2004.12.003

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Avicenna Journal of Clinical Medicine

Designed & Developed by : Yektaweb