Volume 27, Issue 1 (Avicenna Journal of Clinical Medicine-Spring 2020)                   Avicenna J Clin Med 2020, 27(1): 21-29 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Beig M, Taheri M, Arabestani M R. Evaluation Frequency of Metallo-β-Lactamases and Carbapenemase Enzymes in Pseudomonas aeruginosa Clinical Isolates. Avicenna J Clin Med 2020; 27 (1) :21-29
URL: http://sjh.umsha.ac.ir/article-1-2008-en.html
1- MSc in Microbiology, Hamadan University of Medical Sciences, Hamadan, Iran
2- Assistant Professor, Department of Microbiology,Hamadan University of Medical Sciences, Hamadan, Iran
3- Associate Professor, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran , mohammad.arabestani@gmail.com
Abstract:   (2522 Views)
Background and Objective: Due to the increased prevalence of antibiotic resistance to beta-lactam and carbapenem compounds, the identification of beta-lactamase-producing enzymes is essential for the timely treatment of such isolates. The study aimed to determine the prevalence of Metallo-β-Lactamases (MBL) and Klebsiella Pneumoniae Carbapenemase    (KPC) genes among Pseudomonas aeruginosa clinical isolates.
Materials and Methods: In this cross sectional- descriptive study a total of 97 clinical isolates were collected from hospitalized patients of Hamadan hospitals from November 2017 to May 2018. After confirmation of the isolated strains, antibiotic susceptibility of the isolates was determined by disk agar diffusion, Minimum Inhibitory Concentration (MIC) was performed for imipenem using Etest method, Combined Double-Disk Test (CDDT) and Modified Hodge test (MHT) and identification of carbapenemase genes was performed by Polymerase Chain Reaction (PCR).
Results: The results of statistical analysis showed that the highest antibiotic resistance was to cefoxitin, 92 (94.8%), and the lowest antibiotic resistance was to piperacillin-tazobactam, 38 (39.2%). Among the carbapenem antibiotics, the highest antibiotic resistance was to imipenem 48 (49.4%). Among of 49 (50.51%) carbapenem-resistant isolates, 42 (85.71%) had positive results for MIC, 26 (53.06%) and 25 (51.02%) isolates had positive results for IMP / EDTA (CDDT) and MHT test respectively. PCR results also showed that the highest and lowest gene presence among resistant isolates was related to IMP, 20 (40.8%) and GIM gene, 6 (12.24%), respectively.
Conclusion: Results showed that a high percentage of P. aeruginosa isolates 49 (50.51%) were resistant to carbapenem antibiotics, and a high percentage of carbapenem-resistant isolates produced beta-lactamase genes.
Full-Text [PDF 1153 kb]   (1082 Downloads)    
Type of Study: Original | Subject: Microbiology & Medical Virology

1. Potron A, Poirel L, Nordmann P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int J Antimicrob Agents. 2015;45(6):568-85. PMID: 25857949 DOI: 10.1016/j.ijantimicag.2015.03.001
2. Wolter DJ, Lister PD. Mechanisms of beta-lactam resistance among Pseudomonas aeruginosa. Curr Pharm Des. 2013;19(2):209-22. PMID: 22894618
3. Driscoll JA, Brody SL, Kollef MH. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs. 2007;67(3): 351-68. PMID: 17335295 DOI: 10.2165/00003495-200767030-00003
4. Öztürk H, Ozkirimli E, Özgür A. Classification of Beta-lactamases and penicillin binding proteins using ligand-centric network models. PloS One. 2015;10(2):e0117874. PMID: 25689853 DOI: 10.1371/journal.pone.0117874
5. Shaikh S, Fatima J, Shakil S, Rizvi SMD, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J Biol Sci. 2015;22(1):90-101. PMID: 25561890 DOI: 10.1016/j.sjbs.2014.08.002
6. Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2018;37(1):177-92. PMID: 30500353 DOI: 10.1016/j.biotechadv.2018.11.013
7. Sujatha R, Goyal R, Mishra V. Detection of metallo beta lactamase producing pseudomonas aeruginosa among clinical isolates. Int J Curr Microbiol App Sci. 2017;6(2):1567-73. DOI: 10.20546/ijcmas.2017.602.175
8. Pathak P, Jaishi N, Yadav BK, Shah PK. Prevalence of extended spectrum beta lactamases (ESBL) and metallo beta lactamases (MBL) mediated resistance in gram negative bacterial pathogens. Tribhuvan Univ J Microbiol. 2017;4(1):49-54.
9. Amini K, Mobasseri P. Detection rate of metallo-β-lactamase-expressing genes; blaVIM-1, blaVIM-2 and blaSPM-1 in Pseudomonas aeruginosa isolates. Int J Basic Sci Med. 2017;2(1):41-5. DOI: 10.15171/ijbsm.2017.09
10. Galvani AA, Tukmechi A. Determination of the prevalence of metallo-β-lactamases producing Pseudomonas aeruginosa strains from clinical samples by imipenem-EDTA combination disk method in Mottahari and Emam Khomaini hospitals of Urmia. Rep Health Care. 2015;1(2):65-8.
11. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Wayne, PA: Clinical and Laboratory Standards Institute; 2018. P. 38-40.
12. Humphries RM, Hindler JA, Magnano P, Wong-Beringer A, Tibbetts R, Miller SA. Performance of ceftolozane-tazobactam Etest, MIC test strips and disk diffusion as compared to reference broth microdilution for beta-lactam resistant Pseudomonas aeruginosa isolates. J Clin Microbiol. 2017;56(3):e01633-17. PMID: 29212704 DOI: 10.1128/JCM.01633-17
13. Pasteran F, Veliz O, Faccone D, Guerriero L, Rapoport M, Mendez T, et al. A simple test for the detection of KPC and metallo‐β‐lactamase carbapenemase‐producing Pseudomonas aeruginosa isolates with the use of meropenem disks supplemented with aminophenylboronic acid, dipicolinic acid and cloxacillin. Clin Microbiol Infect. 2011;17(9):1438-41. PMID: 21689207 DOI: 10.1111/j.1469-0691.2011.03585.x
14. Carvalhaes CG, Picão RC, Nicoletti AG, Xavier DE, Gales AC. Cloverleaf test (modified Hodge test) for detecting carbapenemase production in Klebsiella pneumoniae: be aware of false positive results. J Antimicrob Chemother. 2009;65(2):249-51. PMID: 19996141 DOI: 10.1093/jac/dkp431
15. Doumith M, Ellington MJ, Livermore DM, Woodford N. Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. J Antimicrob Chemother. 2009;63(4):659-67. PMID: 19233898 DOI: 10.1093/jac/dkp029
16. Honda K, Muramatsu H, Yano S, Ishizawa F, Iwabuchi Y, Sugano Y. Purification and concentration of DNA using l-fucose-specific lectin. Forensic Sci Int Genet Suppl Ser. 2017;6:e177-9. DOI: 10.1016/j.fsigss.2017.09.074
17. Cheruvanky A, Stoesser N, Sheppard AE, Crook DW, Hoffman PS, Weddle E, et al. Enhanced Klebsiella pneumoniae carbapenemase (KPC) expression from a novel Tn4401 deletion. Antimicrob Agents Chemother. 2017;61(6):e00025-17. PMID: 28373185 DOI: 10.1128/AAC.00025-17
18. Wang TH, Leu YS, Wang NY, Liu CP, Yan TR. Prevalence of different carbapenemase genes among carbapenem-resistant Acinetobacter baumannii blood isolates in Taiwan. Antimicrob Resist Infect Control. 2018;7:123. PMID: 30338061 DOI: 10.1186/s13756-018-0410-5
19. Ellington MJ, Kistler J, Livermore DM, Woodford N. Multiplex PCR for rapid detection of genes encoding acquired metallo-β-lactamases. J Antimicrob Chemother. 2006;59(2):320-2. PMID: 17185300 DOI: 10.1093/jac/dkl481
20. Gardner JG, Grundy FJ, Henkin TM, Escalante-Semerena JC. Control of acetyl-coenzyme A synthetase (AcsA) activity by acetylation/deacetylation without NAD+ involvement in bacillus subtilis. J Bacteriol. 2006;188(15):54-60. PMID: 16855235 DOI: 10.1128/JB.00215-06
21. Livermore DM. Interplay of impermeability and chromosomal beta-lactamase activity in imipenem-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1992;36(9):2046-8. PMID: 1329641 DOI: 10.1128/aac.36.9.2046
22. Siasi E, Rafiei Tabatabaii R, Moslehimehr F. Isolation of bla_vim gene in Antibiotic resistant Pseudomonas aeruginosa from hospitals. Cell Mol Biol J. 2018;8(29):97-106. [Persian]
23. Gozalan A, Coskun-Ari FF, Ozdem B, Unaldi O, Celikbilek N, Kirca F, et al. Molecular characterization of vancomycin-resistant Enterococcus faecium strains isolated from carriage and clinical samples in a tertiary hospital, Turkey. J Med Microbiol. 2015;64(7):66-75. PMID: 25976005 DOI: 10.1099/jmm.0.000088
24. Tabasi M, Azizian R, Eskandarion MR, Habibi M, Asadi Karam MR. Detection of Metallo-β-Lactamases (MBLs) producing Pseudomonas aeruginosa isolates in Tehran hospitals, Iran. J Med Microbiol Infect Dis. 2017;5(3):47-50. DOI: 10.29252/JoMMID.
25. Ahmed OM, Manal AA, Samia AG. Evaluation of a new phenotypic method to screen for OprD-deficient mutant strains of Pseudomonas aeruginosa. Int J Curr Microbiol App Sci. 2017;6(2):1894-901.
26. Haghi F, Keramati N, Hemmati F, Zeighami H. Distribution of integrons and gene cassettes among metallo-β-lactamase producing Pseudomonas aeruginosa clinical isolates. Infect Epidemiol Microbiol. 2017;3(2):36-40. DOI: 10.18869/modares.iem.3.2.36
27. Vaez H, Khademi F, Salehi-Abargouei A, Sahebkar A. Metallo-beta-Lactamase-producing Pseudomonas aeruginosa in Iran: a systematic review and meta-analysis. Infez Med. 2018;26(3):216-25. PMID: 30246764
28. Vahdani M, Azimi L, Asghari B, Bazmi F, Rastegar Lari A. Phenotypic screening of extended-spectrum β-lactamase and metallo-β-lactamase in multidrug-resistant Pseudomonas aeruginosa from infected burns. Ann Burns Fire Disasters. 2012;25(2):78-81. PMID: 23233825

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Avicenna Journal of Clinical Medicine

Designed & Developed by : Yektaweb