Volume 27, Issue 4 (Avicenna Journal of Clinical Medicine-Winter 2021)                   Avicenna J Clin Med 2021, 27(4): 201-210 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amini M A, Khodadadi I, Tayebinia H, Talebi S S, Afshar B, Karimi J. Up-Regulation of TPT1-AS1 and SAMMSON and Down-Regulation of LINC00961 Long Non-Coding RNAs (lncRNAs) as Potential Tumor Markers in Gastric Cancer. Avicenna J Clin Med 2021; 27 (4) :201-210
URL: http://sjh.umsha.ac.ir/article-1-2152-en.html
1- MSc in Clinical Biochemistry, Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
2- Professor, Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
3- Assistant Professor, Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
4- Associate Professor, Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran , jamshidkarimi2013@gmail.com
Abstract:   (1645 Views)
Background and Objective:Gastric Cancer (GC) is one of the deadliest cancers in the world. Recently, LINC00961, TPT1-AS1, and SAMMSON Long non-coding RNA (lncRNAs)have been discovered, which significantly contribute to the occurrence of various cancers. This study aimed to determine the expression levels of these genes in GC tissues, compared to healthy adjacent tissues, and the relationship of their expressions with clinical characteristics.
Materials and Methods:In this case-control study, the expression of LINC00961, SAMMSON, and TPT1-AS1 were evaluated in 40 pairs of cancerous and adjacent non-cancerous tissue samples in GC patients using qRT-PCR. Statistical analysis and graphing of the relationship between RNA levels and the clinic-pathological characteristics of GC were carried out using SPSS and Prism 5.00 software. Furthermore, Receiver Operating Characteristic (ROC) curve was drawn to represent the sensitivity and specificity of LINC00961, SAMMSON, and TPT1-AS1 expression as biomarkers of GC.
Results:The expression of TPT1-AS1 and SAMMSON were significantly up-regulated, and the expression of LINC00961 was significantly decreased in GC specimens, compared to adjacent control samples. Our results showed that TPT1-AS1 and SAMMSON RNA levels in GC were significantly related to the tumor size and histopathological grade. Moreover, the ROC curve analysis of LINC00961 and SAMMSON RNA level demonstrated that these two lncRNAs had an appropriate sensitivity and specificity for the diagnosis goals.
Conclusion:Based on the results, LINC00961, SAMMSON, and TPT1-AS1 may play critical roles in exacerbating and even initiating GC due to their cellular pathways.
Full-Text [PDF 1451 kb]   (860 Downloads)    
Type of Study: Original | Subject: Clinical Biochemistry

References
1. Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol. 2006;24(14):2137-50. PMID: 16682732DOI: 10.1200/JCO.2005.05.2308
2. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359-86.PMID: 25220842DOI: 10.1002/ijc.29210
3. Rahman R, Asombang AW, Ibdah JA. Characteristics of gastric cancer in Asia. World J Gastroenterol. 2014;20(16):4483-90.PMID: 24782601DOI: 10.3748/wjg.v20.i16.4483
4. Amini MA, Karimi J, Khodadadi I, Tavilani H, Talebi SS, Afshar B. Overexpression of ROMO1 and OMA1 are potentially biomarkers and predict unfavorable prognosis in gastric cancer. J Gastrointest Cancer. 2020;51(3):939-46.PMID: 31729644DOI: 10.1007/s12029-019-00330-w
5. Shimada H, Noie T, Ohashi M, Oba K, Takahashi Y. Clinical significance of serum tumor markers for gastric cancer: a systematic review of literature by the Task Force of the Japanese Gastric Cancer Association. Gastric Cancer. 2014;17(1):26-33.PMID: 23572188DOI: 10.1007/s10120-013-0259-5
6. Jarroux J, Morillon A, Pinskaya M. History, discovery, and classification of lncRNAs. Adv Exp Med Biol. 2017;1008:1-46.PMID: 28815535DOI: 10.1007/978-981-10-5203-3_1
7. Mercer TR, Mattick JS. Understanding the regulatory and transcriptional complexity of the genome through structure. Genome Res. 2013;23(7):1081-8.PMID: 23817049DOI: 10.1101/gr.156612.113
8. Huang X, Yuan T, Tschannen M, Sun Z, Jacob H, Du M et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics. 2013;14(1):319.PMID: 23663360DOI: 10.1186/1471-2164-14-319
9. Mahmoudian-Sani MR, Jalali A, Jamshidi M, Moridi H, Alghasi A, Shojaeian A, et al. Long non-coding RNAs in thyroid cancer: implications for pathogenesis, diagnosis, and therapy. Oncol Res Treat. 2019;42(3):136-42.PMID: 30799425DOI: 10.1159/000495151
10. Picardi E, D'Erchia AM, Montalvo A, Pesole G. Using REDItools to detect RNA editing events in NGS datasets. Curr Protoc Bioinformatics. 2015;49(1):12-5.PMID: 25754992DOI: 10.1002/0471250953.bi1212s49
11. Lin MT, Song HJ, Ding XY. Long non-coding RNAs involved in metastasis of gastric cancer. World J Gastroenterol. 2018;24(33):3724-37.PMID: 30197478DOI: 10.3748/wjg.v24.i33.3724
12. Dong D, Mu Z, Zhao C, Sun M. ZFAS1: a novel tumor-related long non-coding RNA. Cancer Cell Int. 2018;18(1):125.PMID: 30186041DOI: 10.1186/s12935-018-0623-y
13. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861-74.PMID: 22094949DOI: 10.1038/nrg3074
14. Chen D, Liu L, Wang K, Yu H, Wang Y, Liu J, et al. The role of MALAT-1 in the invasion and metastasis of gastric cancer. Scand J Gastroenterol. 2017;52(6-7):790-6.PMID: 28276823DOI: 10.1080/00365521.2017.1280531
15. Lee NK, Lee JH, Ivan C, Ling H, Zhang X, Park CH et al. MALAT1 promoted invasiveness of gastric adenocarcinoma. BMC Cancer. 2017;17(1):46.PMID: 28077118DOI: 10.1186/s12885-016-2988-4
16. Jiang H, Huang G, Zhao N, Zhang T, Jiang M, He Y, et al. Long non-coding RNA TPT1-AS1 promotes cell growth and metastasis in cervical cancer via acting AS a sponge for miR-324-5p. J Exp Clin Cancer Res. 2018;37(1):169.PMID: 30045766DOI: 10.1186/s13046-018-0846-8
17. Ben-Shachar D, Karry R. Sp1 expression is disrupted in schizophrenia; a possible mechanism for the abnormal expression of mitochondrial complex I genes, NDUFV1 and NDUFV2. PLoS One. 2007;2(9):e817.PMID: 17786189DOI: 10.1371/journal.pone.0000817
18. Li X, Li M, Chen J, Dai H, Wang L, Xiong Y, et al. SAMMSON drives the self-renewal of liver tumor initiating cells through EZH2-dependent Wnt/β-catenin activation. Oncotarget. 2017;8(61):103785-96.PMID: 29262600DOI: 10.18632/oncotarget.21792
19. Morita M, Gravel SP, Chénard V, Sikström K, Zheng L, Alain T, et al. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab. 2013;18(5):698-711.PMID: 24206664DOI: 10.1016/j.cmet.2013.10.001
20. Jiang B, Liu J, Zhang YH, Shen D, Liu S, Lin F, et al. Long noncoding RNA LINC00961 inhibits cell invasion and metastasis in human non-small cell lung cancer. Biomed Pharmacother. 2018;97:1311-8.PMID: 29156520DOI: 10.1016/j.biopha.2017.11.062
21. Schefe JH, Lehmann KE, Buschmann IR, Unger T, Funke-Kaiser H. Quantitative real-time RT-PCR data analysis: current concepts and the novel “gene expression’s CT difference” formula. J Mol Med. 2006;84(11):901-10.PMID: 16972087DOI: 10.1007/s00109-006-0097-6
22. Wu H, Gu YH, Wei L, Guo TK, Zhao Y, Su G, et al. Association of Romo1 gene genetic polymorphisms with risk of gastric cancer in northwestern Chinese population. Pathol Oncol Res. 2015;21(3):581-7.PMID: 25374412DOI: 10.1007/s12253-014-9858-7
23. Sudo G, Nasuno H, Nakachi K, Nakase H. Gastrointestinal: Secondary gastric linitis plastica: a peritoneal recurrence of breast cancer. J Gastroenterol Hepatol. 2019;34(12):2057.PMID: 31264252DOI: 10.1111/jgh.14725
24. Lee S, Kopp F, Chang TC, Sataluri A, Chen B, Sivakumar S, et al. Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell. 2016;164(1-2):69- 80.PMID: 26724866DOI: 10.1016/j.cell.2015.12.017
25. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155-9.PMID: 19188922DOI: 10.1038/nrg2521
26. Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol. 2013;10(6):924-33.PMID: 23696037DOI: 10.4161/rna.24604
27. Hao NB, He YF, Li XQ, Wang K, Wang RL. The role of miRNA and lncRNA in gastric cancer. Oncotarget. 2017;8(46):81572-82.PMID: 29113415DOI: 10.18632/oncotarget.19197
28. Ghasemi H, Amini MA, Pegah A, Azizi E, Tayebinia H, Khanverdilou S, et al. Overexpression of reactive oxygen species modulator 1 is associated with advanced grades of bladder cancer. Mol Biol Rep. 2020;47(9):6497-505.PMID: 32770525DOI: 10.1007/s11033-020-05702-1
29. Wu W, Gao H, Li X, Zhu Y, Peng S, Yu J, et al. LncRNA TPT1‐AS1 promotes tumorigenesis and metastasis in epithelial ovarian cancer by inducing TPT1 expression. Cancer Sci. 2019;110(5):1587-98.PMID: 30941821DOI: 10.1111/cas.14009
30. Hu M, Crawford SA, Henstridge DC, Ng IH, Boey EJ, Xu Y et al. p32 protein levels are integral to mitochondrial and endoplasmic reticulum morphology, cell metabolism and survival. Biochem J. 2013;453(3):381-91.PMID: 23692256DOI: 10.1042/BJ20121829
31. Amini MA, Talebi SS, Karimi J. Reactive oxygen species modulator 1 (ROMO1), a new potential target for cancer diagnosis and treatment. Chonnam Med J. 2019;55(3):136-43.PMID: 31598470DOI: 10.4068/cmj.2019.55.3.136
32. Huang Z, Lei W, Tan J, Hu HB. Long noncoding RNA LINC00961 inhibits cell proliferation and induces cell apoptosis in human non–small cell lung cancer. J Cell Biochem. 2018;119(11):9072-80.PMID: 30010215DOI: 10.1002/jcb.27166
33. Zhang L, Shao L, Hu Y. Long noncoding RNA LINC00961 inhibited cell proliferation and invasion through regulating the Wnt/β‐catenin signaling pathway in tongue squamous cell carcinoma. J Cell Biochem. 2019;120(8):12429-35.PMID: 30854692DOI: 10.1002/jcb.28509

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Avicenna Journal of Clinical Medicine

Designed & Developed by : Yektaweb