Volume 31, Issue 4 (Avicenna Journal of Clinical Medicine-Winter 2025)                   Avicenna J Clin Med 2025, 31(4): 219-227 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Borzouei S, Safdari A, Ayubi E. Development and Validation of a Clinical Risk Model for Predicting Malignancy in Patients with Thyroid Nodules. Avicenna J Clin Med 2025; 31 (4) :219-227
URL: http://sjh.umsha.ac.ir/article-1-3145-en.html
1- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
2- Department of Nursing, Malayer School of Medical Sciences, Chronic Diseases (Home Care) Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
3- Cancer Research Center, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran , aubi65@gmail.com
Abstract:   (279 Views)
Background and Objective: Thyroid cancer is the most common malignancy of the endocrine system. Clinically, it is highly important to identify patients at risk of poor prognosis based on patient characteristics and the features of thyroid nodules. The purpose of the current study was to develop and validate a clinical risk model to predict malignancy in patients with thyroid nodules.  
Materials and Methods: In the analytical cross-sectional study, the data of 650 patients (mean age: 42.36±13.45 years, female: 86.15%) with thyroid nodules who underwent thyroidectomy were analyzed. The samples were patients referred to the specialized endocrinology clinic between 2014 and 2022. A multivariable model was built using demographic, clinical, and Bethesda System data through logistic regression as a generalized linear model (GLM). Interval validity of the model was checked using bootstrap resampling. The discrimination, calibration, and benefits of the model were evaluated using the area under the curve (AUC), Brier score, and decision curve analysis (DCA), respectively. The diagnostic performance of the GLM was compared with five machine learning (ML) algorithms, including linear discriminant analysis (LDA), random forest, neural network, support vector machine, and k-nearest neighbor. 
Results: Out of 650 operated patients, 43% were benign and 57% malignant. The age, gender, history of thyroid diseases in first-degree relatives, type of thyroid disease, thyroid nodule focality, cervical adenopathy, and Bethesda system were significant features in constructing the prediction model based on GLM. The AUC and Brier score of the model were 0.89 and 0.12, respectively. The DCA also showed that the model performed well in clinical practice. Generally, there was no difference among the six ML algorithms in terms of prognostic performance; however, the prognostic parameters of GLM and LDA algorithms were higher than the others.
Conclusion: Developing and validating ML-based prognostic models using demographic, clinical, and Bethesda data may be useful for the treatment management of patients diagnosed with thyroid nodules.
 
Full-Text [PDF 912 kb]   (91 Downloads) |   |   Full-Text (HTML)  (80 Views)  
Type of Study: Original | Subject: Endocrine & Metabolism

References
1. Seib CD, Sosa JA. Evolving Understanding of the Epidemiology of Thyroid Cancer. Endocrinol Metab Clin North Am. 2019;48(1):23-35. PMID: 30717905 DOI: 10.1016/j.ecl.2018.10.002
2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates ofincidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2018;68(6):394-424. PMID: 30207593 DOI: 10.3322/caac.21492
3. Miranda-Filho A, Lortet-Tieulent J, Bray F, Cao B, Franceschi S, Vaccarella S, et al. Thyroid cancer incidence trends by histology in 25 countries: a population-based study. Lancet Diabetes Endocrinol. 2021;9(4):225-34. PMID: 33662333 DOI: 10.1016/S2213-8587(21)00027-9
4. Pizzato M, Li M, Vignat J, Laversanne M, Singh D, La Vecchia C, et al. The epidemiological landscape of thyroid cancer worldwide: GLOBOCAN estimates for incidence and mortality rates in 2020. Lancet Diabetes Endocrinol. 2022;10(4):264-72. PMID: 35271818 DOI: 10.1016/S2213-8587(22)00035-3
5. Nejadghaderi SA, Moghaddam SS, Azadnajafabad S, Rezaei N, Rezaei N, Tavangar SM, et al. Burden of thyroid cancer in North Africa and Middle East 1990-2019. Front Oncol. 2022;12:955358. PMID: 36212501 DOI: 10.3389/fonc.2022.955358
6. Wang Y, Guan Q, Xiang J. Nomogram for predicting central lymph node metastasis in papillary thyroid microcarcinoma: A retrospective cohort study of 8668 patients. Int J Surg. 2018;55:98-102. PMID: 29803769 DOI: 10.1016/j.ijsu.2018.05.023
7. Chung SR, Baek JH, Choi YJ, Sung TY, Song DE, Kim TY, et al. The relationship of thyroid nodule size on malignancy risk according to histological type of thyroid cancer. Acta Radiol. 2020;61(5):620-628. PMID: 31554409 DOI: 10.1177/0284185119875642
8. Parameswaran R, Shulin Hu J, Min En N, Tan WB, Yuan NK. Patterns of metastasis in follicular thyroid carcinoma and the difference between early and delayed presentation. Ann R Coll Surg Engl. 2017;99(2):151–154. PMID: 27659362 DOI: 10.1308/rcsann.2016.0300
9. Wu MH, Lee YY, Lu YL, Lin SF. Risk Factors and Prognosis for Metastatic Follicular Thyroid Cancer. Front Endocrinol. 2022;13:791826. PMID: 35299967 DOI: 10.3389/fendo.2022.791826
10. Baloch ZW, LiVolsi VA, Asa SL, Rosai J, Merino MJ, Randolph G, et al. Diagnostic terminology and morphologic criteria for cytologic diagnosis of thyroid lesions: a synopsis of the National Cancer Institute Thyroid Fine-Needle Aspiration State of the Science Conference. Diag Cytopathol. 2008;36(6):425-37. PMID: 18478609 DOI: 10.1002/dc.20830
11. Kant R, Davis A, Verma V. Thyroid Nodules: Advances in Evaluation and Management. Am Fam Physician. 2020;102(5):298-304. PMID: 32866364
12. Linhares SM, Handelsman R, Picado O, Farrá JC, Lew JI. Fine needle aspiration and the Bethesda system: Correlation with histopathology in 1,228 surgical patients. Surgery. 2021;170(5):1364-8. PMID: 34134896 DOI: 10.1016/j.surg.2021.05.016
13. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26(1):1-133. PMID: 26462967 DOI: 10.1089/thy.2015.0020
14. Aliyev A, Aliyeva I, Giammarile F, Talibova N, Aliyeva G, Novruzov F. Diagnostic accuracy of fine needle aspiration biopsy versus postoperative histopathology for diagnosing thyroid malignancy. Endocrinol Diabetes Metab. 2022;5(6):e373. PMID: 36149057 DOI: 10.1002/edm2.373
15. Gu J, Xie R, Zhao Y, Zhao Z, Xu D, Ding M, et al. A machine learning-based approach to predicting the malignant and metastasis of thyroid cancer. Front oncol. 2022;12:938292. PMID: 36601485 DOI: 10.3389/fonc.2022.938292
16. Liu WC, Li ZQ, Luo ZW, Liao WJ, Liu ZL, Liu JM. Machine learning for the prediction of bone metastasis in patients with newly diagnosed thyroid cancer. Cancer Med. 2021;10(8):2802-11. PMID: 33709570 DOI: 10.1002/cam4.3776
17. Lu J, Liao J, Chen Y, Li J, Huang X, Zhang H, et al. Risk factor analysis and prediction model for papillary thyroid carcinoma with lymph node metastasis. Frontiers Endocrinol. 2023;14:1287593. PMID: 38027220 DOI: 10.3389/fendo.2023.1287593
18. Zhang TT, Zeng J, Yang Y, Wang JJ, Kang YJ, Zhang DH, et al. A visualized dynamic prediction model for survival of patients with geriatric thyroid cancer: A population-based study. Frontiers Endocrinol. 2022;13:1038041. PMID: 36568078 DOI: 10.3389/fendo.2022.1038041
19. Slabaugh G, Beltran L, Rizvi H, Deloukas P, Marouli E. Applications of machine and deep learning to thyroid cytology and histopathology: a review. Front Oncol. 2023;13:958310. PMID: 38023130 DOI: 10.3389/fonc.2023.958310
20. Liu W, Wang S, Ye Z, Xu P, Xia X, Guo M. Prediction of lung metastases in thyroid cancer using machine learning based onSEER database. Cancer Med. 2022;11(12):2503-15. PMID: 35191613 DOI: 10.1002/cam4.4617
21. Kourou K, Exarchos KP, Papaloukas C, Sakaloglou P, Exarchos T, Fotiadis DI. Applied machine learning in cancer research: A systematic review for patient diagnosis, classification and prognosis. Comput Struct Biotechnol J. 2021;19:5546-55. PMID: 34712399 DOI: 10.1016/j.csbj.2021.10.006
22. D'Andréa G, Gal J, Mandine L, Dassonville O, Vandersteen C, Guevara N, et al. Application of machine learning methods to guide patient management by predicting the risk of malignancy of Bethesda III-V thyroid nodules. Eur J Endocrinol. 202;188(3):lvad017. PMID: 36799885 DOI:10.1093/ejendo/lvad017
23. Liu X, Medici M, Kwong N, Angell TE, Marqusee E, Kim MI, et al. Bethesda Categorization of Thyroid Nodule Cytology and Prediction of Thyroid Cancer Type and Prognosis. Thyroid. 2016;26(2):256-61. PMID: 26563459 DOI: 10.1089/thy.2015.0376
24. Cibas ES, Ali SZ. The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid. 2017;27(11):1341-1346. PMID:29091573 DOI: 10.1089/thy.2017.0500
25. Gweon HM, Son EJ, Youk JH, Kim JA. Thyroid nodules with Bethesda system III cytology: can ultrasonography guide the next step? Ann Surg Oncol. 2013;20(9):3083-8. PMID: 23700214 DOI: 10.1245/s10434-013-2990-x
26. Mileva M, Stoilovska B, Jovanovska A, Ugrinska A, Petrushevska G, Kostadinova-Kunovska S, et al. Thyroid cancer detection rate and associated risk factors in patients with thyroid nodules classified as Bethesda category III. Radiol Oncol. 2018;52(4):370-6. PMID: 30265655 DOI:10.2478/raon-2018-0039
27. Xi NM, Wang L, Yang C. Improving the diagnosis of thyroid cancer by machine learning and clinical data. Sci Rep. 2022;12(1):11143. DOI: 10.1038/s41598-022-15342-z PMID: 35778428
28. Yaghoobi Notash A, Yaghoobi Notash A, Omidi Z, Haghighat S. Prediction of lymphedema occurrence in patients with breast cancer using the optimized combination of ensemble learning algorithm and feature selection. PMC Med Inform Decis Mak. 2022;22(1):195. PMID: 35879760 DOI: 10.1186/s12911-022-01937-z
29. Mourad M, Moubayed S, Dezube A, Mourad Y, Park K, Torreblanca-Zanca A, et al. Machine Learning and Feature Selection Applied to SEER Data to Reliably Assess Thyroid Cancer Prognosis. Sci Rep. 2020;10(1):5176. PMID: 32198433 DOI: 10.1038/s41598-020-62023-w
30. Borzooei S, Briganti G, Golparian M, Lechien JR, Tarokhian A. Machine learning for risk stratification of thyroid cancer patients: a 15-year cohort study. Eur Arch Otorhinolaryngol. 2024;281(4):2095-2104. PMID: 37902840 DOI: 10.1007/s00405-023-08299-w

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Avicenna Journal of Clinical Medicine

Designed & Developed by : Yektaweb