1. Seib CD, Sosa JA. Evolving Understanding of the Epidemiology of Thyroid Cancer. Endocrinol Metab Clin North Am. 2019;48(1):23-35. PMID: 30717905 DOI: 10.1016/j.ecl.2018.10.002
2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates ofincidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2018;68(6):394-424. PMID: 30207593 DOI: 10.3322/caac.21492
3. Miranda-Filho A, Lortet-Tieulent J, Bray F, Cao B, Franceschi S, Vaccarella S, et al. Thyroid cancer incidence trends by histology in 25 countries: a population-based study. Lancet Diabetes Endocrinol. 2021;9(4):225-34. PMID: 33662333 DOI: 10.1016/S2213-8587(21)00027-9
4. Pizzato M, Li M, Vignat J, Laversanne M, Singh D, La Vecchia C, et al. The epidemiological landscape of thyroid cancer worldwide: GLOBOCAN estimates for incidence and mortality rates in 2020. Lancet Diabetes Endocrinol. 2022;10(4):264-72. PMID: 35271818 DOI: 10.1016/S2213-8587(22)00035-3
5. Nejadghaderi SA, Moghaddam SS, Azadnajafabad S, Rezaei N, Rezaei N, Tavangar SM, et al. Burden of thyroid cancer in North Africa and Middle East 1990-2019. Front Oncol. 2022;12:955358. PMID: 36212501 DOI: 10.3389/fonc.2022.955358
6. Wang Y, Guan Q, Xiang J. Nomogram for predicting central lymph node metastasis in papillary thyroid microcarcinoma: A retrospective cohort study of 8668 patients. Int J Surg. 2018;55:98-102. PMID: 29803769 DOI: 10.1016/j.ijsu.2018.05.023
7. Chung SR, Baek JH, Choi YJ, Sung TY, Song DE, Kim TY, et al. The relationship of thyroid nodule size on malignancy risk according to histological type of thyroid cancer. Acta Radiol. 2020;61(5):620-628. PMID: 31554409 DOI: 10.1177/0284185119875642
8. Parameswaran R, Shulin Hu J, Min En N, Tan WB, Yuan NK. Patterns of metastasis in follicular thyroid carcinoma and the difference between early and delayed presentation. Ann R Coll Surg Engl. 2017;99(2):151–154. PMID: 27659362 DOI: 10.1308/rcsann.2016.0300
9. Wu MH, Lee YY, Lu YL, Lin SF. Risk Factors and Prognosis for Metastatic Follicular Thyroid Cancer. Front Endocrinol. 2022;13:791826. PMID: 35299967 DOI: 10.3389/fendo.2022.791826
10. Baloch ZW, LiVolsi VA, Asa SL, Rosai J, Merino MJ, Randolph G, et al. Diagnostic terminology and morphologic criteria for cytologic diagnosis of thyroid lesions: a synopsis of the National Cancer Institute Thyroid Fine-Needle Aspiration State of the Science Conference. Diag Cytopathol. 2008;36(6):425-37. PMID: 18478609 DOI: 10.1002/dc.20830
11. Kant R, Davis A, Verma V. Thyroid Nodules: Advances in Evaluation and Management. Am Fam Physician. 2020;102(5):298-304. PMID: 32866364
12. Linhares SM, Handelsman R, Picado O, Farrá JC, Lew JI. Fine needle aspiration and the Bethesda system: Correlation with histopathology in 1,228 surgical patients. Surgery. 2021;170(5):1364-8. PMID: 34134896 DOI: 10.1016/j.surg.2021.05.016
13. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26(1):1-133. PMID: 26462967 DOI: 10.1089/thy.2015.0020
14. Aliyev A, Aliyeva I, Giammarile F, Talibova N, Aliyeva G, Novruzov F. Diagnostic accuracy of fine needle aspiration biopsy versus postoperative histopathology for diagnosing thyroid malignancy. Endocrinol Diabetes Metab. 2022;5(6):e373. PMID: 36149057 DOI: 10.1002/edm2.373
15. Gu J, Xie R, Zhao Y, Zhao Z, Xu D, Ding M, et al. A machine learning-based approach to predicting the malignant and metastasis of thyroid cancer. Front oncol. 2022;12:938292. PMID: 36601485 DOI: 10.3389/fonc.2022.938292
16. Liu WC, Li ZQ, Luo ZW, Liao WJ, Liu ZL, Liu JM. Machine learning for the prediction of bone metastasis in patients with newly diagnosed thyroid cancer. Cancer Med. 2021;10(8):2802-11. PMID: 33709570 DOI: 10.1002/cam4.3776
17. Lu J, Liao J, Chen Y, Li J, Huang X, Zhang H, et al. Risk factor analysis and prediction model for papillary thyroid carcinoma with lymph node metastasis. Frontiers Endocrinol. 2023;14:1287593. PMID: 38027220 DOI: 10.3389/fendo.2023.1287593
18. Zhang TT, Zeng J, Yang Y, Wang JJ, Kang YJ, Zhang DH, et al. A visualized dynamic prediction model for survival of patients with geriatric thyroid cancer: A population-based study. Frontiers Endocrinol. 2022;13:1038041. PMID: 36568078 DOI: 10.3389/fendo.2022.1038041
19. Slabaugh G, Beltran L, Rizvi H, Deloukas P, Marouli E. Applications of machine and deep learning to thyroid cytology and histopathology: a review. Front Oncol. 2023;13:958310. PMID: 38023130 DOI: 10.3389/fonc.2023.958310
20. Liu W, Wang S, Ye Z, Xu P, Xia X, Guo M. Prediction of lung metastases in thyroid cancer using machine learning based onSEER database. Cancer Med. 2022;11(12):2503-15. PMID: 35191613 DOI: 10.1002/cam4.4617
21. Kourou K, Exarchos KP, Papaloukas C, Sakaloglou P, Exarchos T, Fotiadis DI. Applied machine learning in cancer research: A systematic review for patient diagnosis, classification and prognosis. Comput Struct Biotechnol J. 2021;19:5546-55. PMID: 34712399 DOI: 10.1016/j.csbj.2021.10.006
22. D'Andréa G, Gal J, Mandine L, Dassonville O, Vandersteen C, Guevara N, et al. Application of machine learning methods to guide patient management by predicting the risk of malignancy of Bethesda III-V thyroid nodules. Eur J Endocrinol. 202;188(3):lvad017. PMID: 36799885 DOI:10.1093/ejendo/lvad017
23. Liu X, Medici M, Kwong N, Angell TE, Marqusee E, Kim MI, et al. Bethesda Categorization of Thyroid Nodule Cytology and Prediction of Thyroid Cancer Type and Prognosis. Thyroid. 2016;26(2):256-61. PMID: 26563459 DOI: 10.1089/thy.2015.0376
24. Cibas ES, Ali SZ. The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid. 2017;27(11):1341-1346. PMID:29091573 DOI: 10.1089/thy.2017.0500
25. Gweon HM, Son EJ, Youk JH, Kim JA. Thyroid nodules with Bethesda system III cytology: can ultrasonography guide the next step? Ann Surg Oncol. 2013;20(9):3083-8. PMID: 23700214 DOI: 10.1245/s10434-013-2990-x
26. Mileva M, Stoilovska B, Jovanovska A, Ugrinska A, Petrushevska G, Kostadinova-Kunovska S, et al. Thyroid cancer detection rate and associated risk factors in patients with thyroid nodules classified as Bethesda category III. Radiol Oncol. 2018;52(4):370-6. PMID: 30265655 DOI:10.2478/raon-2018-0039
27. Xi NM, Wang L, Yang C. Improving the diagnosis of thyroid cancer by machine learning and clinical data. Sci Rep. 2022;12(1):11143. DOI: 10.1038/s41598-022-15342-z PMID: 35778428
28. Yaghoobi Notash A, Yaghoobi Notash A, Omidi Z, Haghighat S. Prediction of lymphedema occurrence in patients with breast cancer using the optimized combination of ensemble learning algorithm and feature selection. PMC Med Inform Decis Mak. 2022;22(1):195. PMID: 35879760 DOI: 10.1186/s12911-022-01937-z
29. Mourad M, Moubayed S, Dezube A, Mourad Y, Park K, Torreblanca-Zanca A, et al. Machine Learning and Feature Selection Applied to SEER Data to Reliably Assess Thyroid Cancer Prognosis. Sci Rep. 2020;10(1):5176. PMID: 32198433 DOI: 10.1038/s41598-020-62023-w
30. Borzooei S, Briganti G, Golparian M, Lechien JR, Tarokhian A. Machine learning for risk stratification of thyroid cancer patients: a 15-year cohort study. Eur Arch Otorhinolaryngol. 2024;281(4):2095-2104. PMID: 37902840 DOI: 10.1007/s00405-023-08299-w